A Simple and Effective Approach to **Continual Learning** for Image Classification

Overview of the Winning Entry for the CVPR 2020 CLVISION Challenge

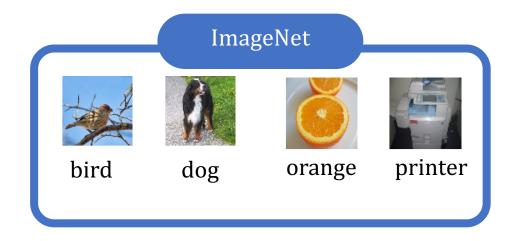
Zheda Mai¹, Hyunwoo Kim², Jihwan Jeong¹, Scott Sanner¹ University of Toronto¹, LG Sciencepark²

Agenda

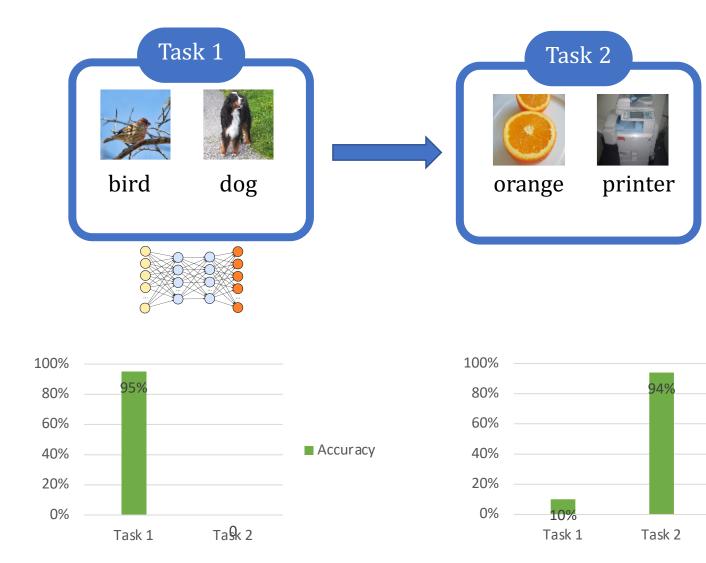
- Introduction to Continual Learning
- CLVISION challenge at CVPR2020
- Winning solutions presentation

Neural Network can't learn continuously

- Conventional deep learning
 - Mini-batches are iid-sampled from the whole dataset
 - Example: ImageNet classification



Neural Network can't learn continuously



- When incrementally learning from non-stationary data with SGD, neural networks suffer from *catastrophic forgetting*.
- Continual Learning(CL) attempts to teach neural networks how to learn continuously.
- Two main challenges
 - Avoid forgetting from old tasks
 - Improve current task learning

CLVISION Challenge at CVPR2020

Based on CORe50 ((**C**)ontinual (**O**)bject (**Re**)cognition) dataset with 50 classes

- Each column represents a category
- Each row shows objects with non-stationarity
 - holding hand (left or right)
 - background environments
 - illumination
 - occlusion

CLVISION Challenge - Evaluation

- Final test accuracy
- Average validation accuracy over time
- Total training & test time
- Ram usage
- Disk usage

Final aggregation metric

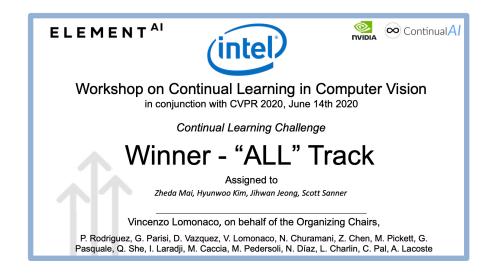
CL_score: weighted average of all the metrics (0.3, 0.1, 0.15, 0.125, 0.125)

Three challenge tracks

- New instances(NI)
 - 8 tasks of the same 50 classes,
 - Each task has images collected in different environmental conditions
 - No task label is given
- New instances & classes (NIC)
 - 391 tasks, each one has 300 images of the same class
 - The class can be seen or completely new
 - No task label is given
- Multi-Task New classes(NC)
 - 9 tasks, 10 classes in the first one and 5 classes in the other 8 tasks
 - Task label is given

Final Ranking

TEAM NAME	TEST ACC (%)	VAL ACC _{avg} (%)	RUN _{time} (M)	RAM _{avg} (MB)	RAM _{max} (MB)	DISK _{avg} (MB)	DISK _{max} (MB)	CL_{score}
UT_LG	0.92	0.68	68.67	10643.25	11624.87	0	0	0.694359483
JODELET	0.88	0.64	6.59	15758.62	18169.32	0	0	0.680821395
Ar1	0.80	0.58	20.46	8040.47	10092.72	0	0	0.663760006
Yc14600	0.91	0.65	64.88	16425.64	19800.48	0	0	0.653114358
ICT_VIPL	0.95	0.68	76.73	2459.31	2459.68	392.1875	562.5	0.61726439
SOONY	0.88	0.63	120.33	14533.97	15763.60	0	0	0.612231922
Rehearsal	0.75	0.52	22.87	19056.77	23174.11	0	0	0.570829566
JimiB	0.91	0.74	242.12	17995.61	23765.51	0	0	0.542653619
NOOBMASTER	0.76	0.53	147.59	24714.06	30266.62	0	0	0.464365891
NAÏVE	0.23	0.24	5.16	15763.46	18158.02	0	0	0.32735254
AVG	0.80	0.59	77.54	14539.12	17327.49	39.22	56.25	0.58



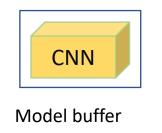
Winning solutions

- Team UT_LG
 - University of Toronto
 - LG Sciencepark
- Team ICT_VIPL
 - Institute of Computing Technology
 - University of Chinese Academy of Sciences
- Team YC14600
 - University of Bristol
 - Amazon

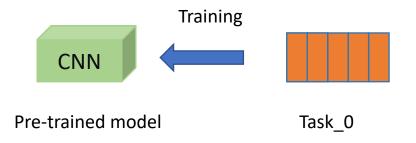
Team UT_LG

Batch-level Experience Replay with Review for Continual Learning

• Used in NI & NIC track, where no task label is given

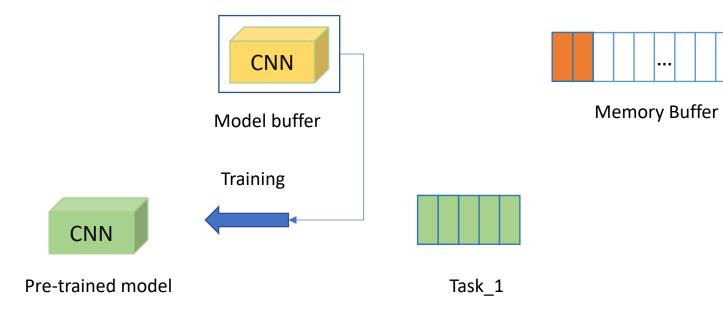


Memory Buffer

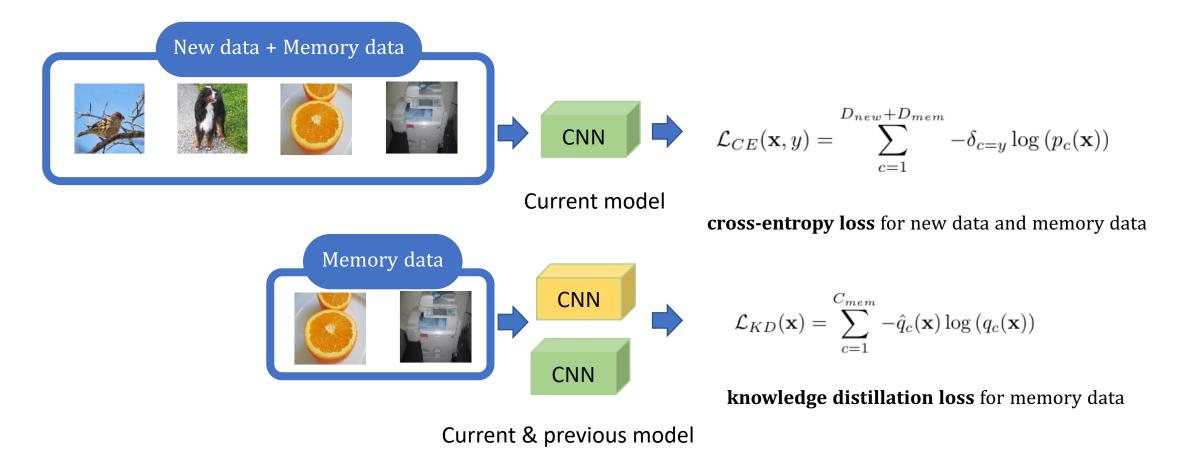


Team UT_LG

Batch-level Experience Replay with Review for Continual Learning

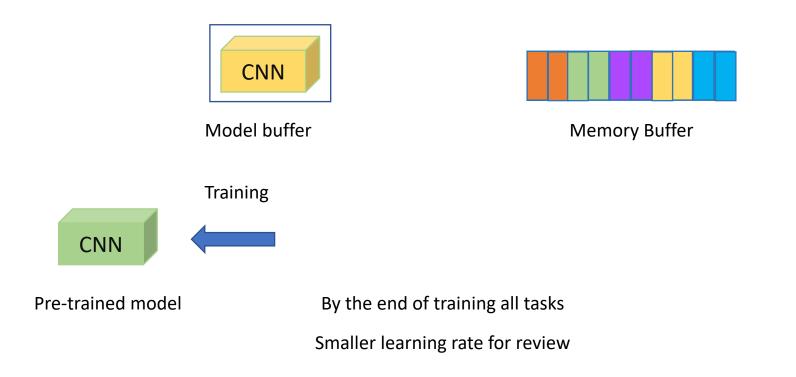


Batch-level Experience Replay with Review for Continual Learning

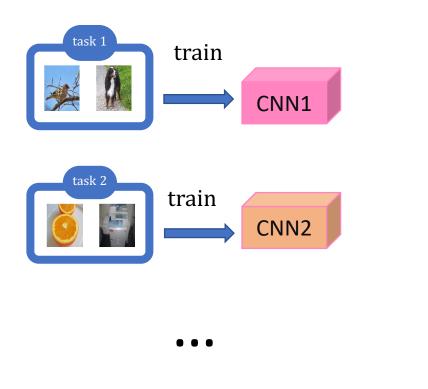


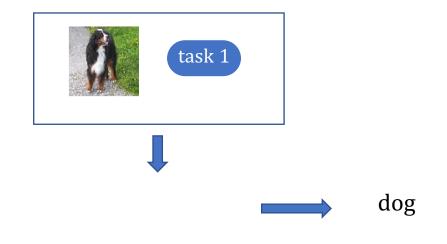
Total Loss $\mathcal{L}(\mathbf{x}, y) = \mathcal{L}_{CE}(\mathbf{x}, y) + \lambda \mathcal{L}_{KD}(\mathbf{x}) + L_2$

Batch-level Experience Replay with **Review** for Continual Learning



NC – task label is given





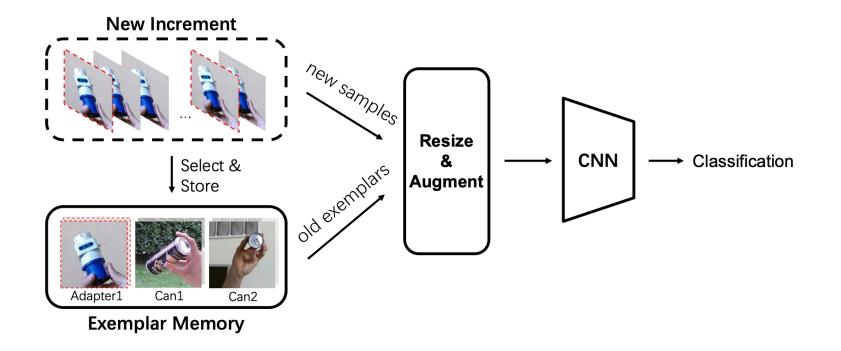
Training

Test

Training Details

- Architecture
 - A pre-trained DenseNet-161 is used for all scenarios
 - Freeze the the first two blocks and tune the other two blocks
- Pre-processing
 - Center-crop the images with size 100x100
 - Resize the images to 224x224
 - Pixel-level and spatial-level data augmentation
- Memory buffer strategy
 - Update: Reservoir sampling
 - Retrieve: Random

ICT_VIPL Team



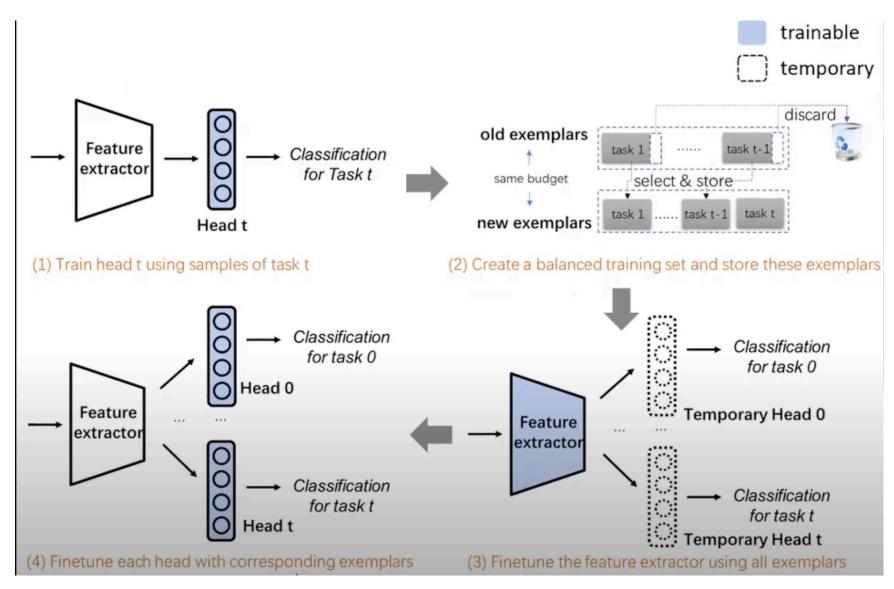
- For every incoming mini-batch, retrieve another mini-batch from memory buffer
- Concatenate them to create a new mini-batch
- Resize and data augmentation

ICT_VIPL Team

Number of images in the concatenated mini-batch

- Problem
 - Incoming mini-batch(size 10) contains class 7 and class 8
 - Memory mini-batch(size 10) contains class 1-6
 - There is imbalance in the concatenated mini-batch
 - More severe when the model sees more classes
- Their solution
 - Divide the softmax output by the class prior estimated by the ratio of the corresponding class samples in the current training set.
 - This is a popular strategy to tackle class imbalance problem

NC - task label is given



Team YC14600

Proposed Discriminative Representation Loss

- Minimize the similarities of representations between samples from different classes
- Maximize the similarities of representations between samples from the same class

$$\mathcal{L} = \mathcal{L}_{clf} + \lambda \mathcal{L}_{DR}, \ \lambda > 0, \ ext{ where } \ \mathcal{L}_{DR} = \min_{\Theta} (\mathcal{L}_{bt} - \mathcal{L}_{wi})$$

- L_{clf} is the cross-entropy loss for the classification task
- *L_{bt}* is the similarities of representations between samples from different classes
- L_{wi} is the similarities of representations between samples from a same class

zheda.mai@mail.utoronto.ca