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Agenda

• Introduction to Continual Learning

• CLVISION challenge at CVPR2020

• Winning solutions presentation



Neural Network can’t learn continuously

• Conventional deep learning
• Mini-batches are iid-sampled from the whole dataset
• Example: ImageNet classification

ImageNet
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Neural Network can’t learn continuously
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• When incrementally learning from
non-stationary data with SGD,
neural networks suffer from
catastrophic forgetting.

• Continual Learning(CL) attempts to 
teach neural networks how to learn 
continuously.

• Two main challenges
• Avoid forgetting from old tasks
• Improve current task learning



CLVISION Challenge at CVPR2020

Based on CORe50 ((C)ontinual (O)bject (Re)cognition)
dataset with 50 classes

• Each column represents a category

• Each row shows objects with non-stationarity
• holding hand (left or right)
• background environments
• illumination
• occlusion



CLVISION Challenge - Evaluation

• Final test accuracy
• Average validation accuracy over time
• Total training & test time
• Ram usage
• Disk usage

Final aggregation metric
CL_score: weighted average of all the metrics (0.3, 0.1, 0.15, 0.125, 0.125 )



Three challenge tracks

• New instances(NI)
• 8 tasks of the same 50 classes,
• Each task has images collected in different environmental conditions
• No task label is given

• New instances & classes (NIC)
• 391 tasks, each one has 300 images of the same class
• The class can be seen or completely new
• No task label is given

• Multi-Task New classes(NC)
• 9 tasks, 10 classes in the first one and 5 classes in the other 8 tasks
• Task label is given



Final Ranking



Winning solutions

• Team UT_LG
• University of Toronto
• LG Sciencepark

• Team ICT_VIPL
• Institute of Computing Technology
• University of Chinese Academy of Sciences

• Team YC14600
• University of Bristol
• Amazon



Team UT_LG

…

Memory Buffer

Task_0Pre-trained model

Training

Batch-level Experience Replay with Review for Continual Learning
• Used in NI & NIC track, where no task label is given
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Team UT_LG

Batch-level Experience Replay with Review for Continual Learning
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Batch-level Experience Replay with Review for Continual Learning

New data + Memory data

Memory data

CNN

Current model

CNN

cross-entropy loss for new data and memory data

knowledge distillation loss for memory data

Total Loss

CNN

Current & previous model



Batch-level Experience Replay with Review for Continual Learning
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By the end of training all tasksPre-trained model
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Smaller learning rate for review
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NC – task label is given
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Training Details

• Architecture
• A pre-trained DenseNet-161 is used for all scenarios
• Freeze the the first two blocks and tune the other two blocks

• Pre-processing
• Center-crop the images with size 100x100
• Resize the images to 224x224
• Pixel-level and spatial-level data augmentation

• Memory buffer strategy
• Update: Reservoir sampling
• Retrieve: Random



ICT_VIPL Team

• For every incoming mini-batch, retrieve another mini-batch from memory buffer
• Concatenate them to create a new mini-batch
• Resize and data augmentation



ICT_VIPL Team

• Problem
• Incoming mini-batch(size 10) contains class 7 and class 8
• Memory mini-batch(size 10) contains class 1-6
• There is imbalance in the concatenated mini-batch
• More severe when the model sees more classes

• Their solution
• Divide the softmax output by the class prior estimated by the ratio of the
corresponding class samples in the current training set.
• This is a popular strategy to tackle class imbalance problem
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NC - task label is given



Team YC14600

Proposed Discriminative Representation Loss
• Minimize the similarities of representations between samples from different classes
• Maximize the similarities of representations between samples from the same class

where

• 𝐿!"# is the cross-entropy loss for the classification task
• 𝐿$% is the similarities of representations between samples from different classes
• 𝐿&' is the similarities of representations between samples from a same class 



Thank you!
Q&A

zheda.mai@mail.utoronto.ca


