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Abstract
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2021

Online continual learning (CL) in image classification studies the problem of learning to classify images

from an online stream of data and tasks, where tasks may include data with new classes or nonstation-

arity. One of the key challenges of CL for neural networks is to avoid catastrophic forgetting, forgetting

old tasks in the presence of more recent tasks.

This thesis starts with a comparative empirical survey of the state-of-the-art methods and recently

proposed tricks to better understand their relative advantages and the settings where they work the

best. We note that the methods’ performance highly depends on the experimental setups, including CL

setting, dataset and memory buffer size. Also, we find that memory-replay-based methods with simple

tricks can produce performance levels that bring online CL much closer to the ultimate goal of matching

offline training.

Given the insights from the survey, we provide a simple but effective approach that combines mem-

ory replay, CL tricks summarized in the survey and common image classification techniques, including

transfer learning, data augmentation and deeper network architectures to prepare CL for real-world

applications. The proposed method shows remarkable performance in different metrics, including accu-

racy, RAM usage and run time, etc., in various realistic settings and demonstrates the practicality of

CL algorithms.

As we can see above, memory replay techniques have shown exceptional promise in online CL, but

the best method for selecting which buffered images to replay is still an open question. To this end, we

propose a novel Adversarial Shapley value scoring method that scores memory data samples according to

their ability to preserve latent decision boundaries for previously observed classes (to maintain learning

stability and avoid forgetting) while interfering with latent decision boundaries of current classes being

learned (to encourage plasticity and optimal learning of new class boundaries).

Overall, this thesis has made three meaningful contributions for online CL in image classification,

including comprehensively reviewing and evaluating recent approaches, addressing the challenges for

bringing online CL into more realistic applications, and proposing a novel memory buffer management

method that shows the state-of-the-art performance when memory buffer size is small.
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Chapter 1

Introduction

1.1 General Introduction

With the ubiquity of personal smart devices and image-related applications, a massive amount of image

data is generated daily. While image-based deep neural networks have demonstrated exceptional ad-

vances in recent years [138], incrementally updating a neural network with a nonstationary data stream

results in catastrophic forgetting (CF) [109, 45], the inability of a network to perform well on previously

seen data after updating with recent data. For this reason, conventional deep learning tends to focus on

offline training, where each mini-batch is sampled i.i.d from a static dataset with multiple epochs over

the training data. However, to accommodate changes in the data distribution, such a training scheme

requires entirely retraining the network on the new dataset, which is inefficient and sometimes infeasible

when previous data are not available due to storage limits or privacy issues.

Continual Learning (CL) studies the problem of learning from a non-i.i.d stream of data, with

the goal of preserving and extending the acquired knowledge. A more complex and general viewpoint

of CL is the stability-plasticity dilemma [16, 111] where stability refers to the ability to preserve past

knowledge and plasticity denotes the fast adaptation of new knowledge. Following this viewpoint, CL

seeks to strike a balance between learning stability and plasticity. Since CL is often used interchangeably

with lifelong learning [23, 162] and incremental learning [130, 18], for simplicity, we will use CL to refer

to all concepts mentioned above.

Most early CL approaches consider task-incremental setting [150], where data arrives one task at a

time and the model can utilize task-ID during both training and inference time [77, 91, 103]. Specifically,

a common practice in this setting is to assign a separate output layer (head) for each task; then the

model just needs to classify labels within a task, which is known as multi-head evaluation [18]. However,

this setting requires additional supervisory signals at inference time–namely the task-ID–to select the

corresponding head, which obviates its use when the task label is unavailable.

This thesis focuses on two realistic, but challenging settings, known as Online Class Incremental

(OCI) and Online Domain Incremental (ODI), where a model needs to learn from an online stream

of data (each sample is seen only once) and the incoming data may include new classes (OCI) or data

nonstationarity (ODI). In contrast to the task incremental setting, these settings adopt the single-head

evaluation [18], where the model needs to classify all labels without task-ID. These settings are based

on the practical CL desiderata proposed recently [87, 26, 37] and it has received much attention in the

1



Chapter 1. Introduction 2

past year [6, 8, 85].

To keep focus, we only consider the supervised classification problem in computer vision. Although

CL is also studied in reinforcement learning [134, 116, 71] and more recently in unsupervised learn-

ing [129], the image classification problem is still the main focus for many CL researchers.

In this thesis, we address three important questions in online CL:

• Over the past few years, a large range of methods and tricks have been introduced to address the

online CL problem, but there is limited consensus in the literature on experimental setups and

datasets. Although most papers show that their methods surpass others in one specific setting,

one open question is: what are the relative advantages of these approaches and the settings where

they work best?

• The primary evaluation of CL in the last few years has been centred around accuracy-related

metrics. However, this may lead to a biased conclusion without accounting for the scalability

of these techniques over an increasing number of tasks and more complex settings [30]. When

considering more practical metrics, including accuracy, total run time, RAM usage, and more

realistic CL datasets and settings, which method works the best?

• Methods with a memory buffer have shown to be successful and efficient for the online class

incremental setting [8, 6]. Since the memory buffer is the only place to store data from previous

tasks, a vital but open question for these methods is how to retrieve memory samples and update

the memory buffer when new data arrives?

1.2 Main Contributions

This thesis aims to study the online CL in image classification that requires a neural network to learn

continually from an online stream of non-i.i.d data and accumulate the acquired knowledge without

forgetting. Specifically, we try to address the three crucial problems we mentioned in the previous

section, and the contributions of this thesis can be summarized as follows:

(1) We provide a practical comparative survey of the state-of-the-art methods and recently proposed

tricks to better understand their relative advantages and the settings where they work the best.

We note that the methods’ performance highly depends on the experimental setups, including CL

setting, dataset and memory buffer size. Also, we find that memory-replay-based methods with

simple tricks can produce performance levels that bring online CL much closer to the ultimate goal

of matching offline training.

(2) We provide a simple but effective approach that combines memory replay and commonly used tech-

niques in image classification including, transfer learning, data augmentation and deeper network

architectures. The proposed method shows remarkable performance in different metrics, including

accuracy, RAM usage and run time, etc., in various realistic settings and demonstrates the practi-

cality of CL algorithms. Our solution based on this method won the CLVision Continual Learning

challenge at Computer Vision and Pattern Recognition conference, CVPR 2020.

(3) We propose a novel memory-based method called Adversarial Shapley value Experience Replay

(ASER) that leverages Shapley value (SV) to determine the contribution of memory samples to
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learning performance. We introduce an adversarial perspective of SV for CL memory retrieval that

scores memory data samples according to their ability to preserve latent decision boundaries for

previously observed classes (to maintain learning stability and avoid forgetting) while interfering

with latent decision boundaries of current classes being learned (to encourage plasticity and opti-

mal learning of new class boundaries). Through extensive experiments on three commonly used

benchmarks in the CL literature, we demonstrate that ASER provides competitive or improved

performance compared to state-of-the-art memory-based methods in the OCI setting, especially

when the memory buffer size is small.

1.3 Outline

The thesis proceeds as follows. Chapter 2 provides a practical comparative survey of the state-of-the-art

methods and recently proposed tricks. We start with the review of recent surveys covering the advances

of CL, showing the lack of empirical survey of online CL. Next, we present a general introduction to

online CL, including the formal definition, evaluation metrics, hyperparameter tuning protocol. After

that, we provide an overview of the general approaches in CL and summarize the recently proposed

methods. Then we review the methods and tricks we compared, followed by a systematic evaluation of

them in various experimental settings and datasets.

Chapter 3 introduces a simple but effective approach that won the CLVision Continual Learning

challenge at Computer Vision and Pattern Recognition conference, CVPR 2020. We begin by introducing

the competition, including dataset, scenarios and evaluation framework. We then explain our proposed

approach, dubbed Batch-level Experience Replay with Review. This chapter ends with empirical results

in all the four competition tracks and final competition result.

In Chapter 4, we propose a novel memory-based method called Adversarial Shapley value Experience

Replay (ASER) that leverages Shapley value (SV) to determine the contribution of memory samples to

learning performance. We start with an introduction to SV for machine learning and an efficient KNN SV

computation. Then we explain how we use SV to manage the memory buffer of memory-based methods,

followed by detailed experiments showing that the proposed method provides competitive or improved

performance compared to state-of-the-art memory-based methods in the OCI setting, especially when

the memory buffer size is small.

Finally, in Chapter 5, we summarize the main contributions of this thesis and discuss a few possible

future research directions.



Chapter 2

Comparative Empirical Study of

Online Continual Learning

Over the past few years, a broad range of methods and tricks have been introduced to address the online

CL problem, but due to the plethora of experiment settings, a fair comparison of the state-of-the-art

methods remains challenging. To this end, we begin the contributions of the thesis with a comprehensive

empirical study of a broad range of methods and tricks to better understand the relative advantages of

different approaches and the settings where they work best.

2.1 Motivation

Many existing CL approaches use a task incremental setting where data arrives one task (i.e., set of

classes to be identified) at a time and the model can utilize task identity during both training and

testing [77, 91, 103]. Specifically, a common practice in this setting is to assign a separate output layer

(head) for each task; then the model just needs to classify labels within a task, which is known as

multi-head evaluation [18]. However, this setting requires additional supervisory signals at test time —

namely the task identity — to select the corresponding head, which obviates its use when the task label

is unavailable.

Recently, methods have started addressing the more realistic and challenging settings, known as

Online Class Incremental (OCI) and Online Domain Incremental (ODI), where a model needs to learn

from an online stream of data, with each sample being seen only once. Also, the incoming data either

include new classes (class incremental) or data nonstationarity (domain incremental). In contrast to the

task incremental setting, these settings adopt the single-head evaluation: the model needs to classify

all labels without task-IDs [18]. These settings are based on the practical CL desiderata proposed

recently [87, 26, 37] and have received much attention in the past year [6, 8, 85].

Over the past few years, a broad range of methods and tricks have been introduced to address the

OCI and ODI settings, but many have not been fairly and systematically compared under a variety of

settings. To better understand the relative advantages of different approaches and the settings where

they work best, this chapter aims to do the following:

• We fairly compare state-of-the-art methods in OCI and determine which works best at different

4
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memory and data settings. We observe earlier proposed iCaRL [130] remains competitive when the

memory buffer is small; GDumb [125] is a strong baseline that outperforms many recently proposed

methods in medium-size datasets, while MIR [6] performs the best in a larger-scale dataset. Also,

we experimentally and theoretically confirm that a key cause of CF is due to the recency learning

bias towards new classes in the last fully connected layer owing to the imbalance between previous

data and new data.

• We determine if the best OCI methods are also competitive in the ODI setting. We note that

GDumb performs quite poorly in ODI, whereas MIR — already competitive in OCI — is still

strongly competitive in ODI. Overall, these results allow us to conclude that MIR is a strong and

versatile online CL method across a wide variety of settings.

• We evaluate the performance of 7 simple but effective “tricks” to assess their relative impacts. We

find that all tricks are beneficial and when augmented with the “review trick” [104] and a nearest

class mean (NCM) classifier [130], MIR produces performance levels that bring online CL much

closer to its ultimate goal of matching offline training.

2.2 Related Work

With the surge in the popularity of CL, there are multiple reviews and surveys covering the advances

of CL. The first group of surveys are not empirical. [121] discusses the biological perspective of CL and

summarizes how various approaches alleviate catastrophic forgetting. [87] formalizes the CL problem

and outlines the existing benchmarks, metrics, approaches and evaluation methods with the emphasis

on robotics applications. They also recommend some desiderata and guidelines for future CL research.

[122] emphasizes the importance of online CL and discusses recent advances in this setting. Although

these three surveys descriptively review the recent development of CL and provide practical guidelines,

they do not perform any empirical comparison between methods.

In contrast, the second group of surveys on CL are empirical. For example, [58, 150] evaluate

multiple CL methods on three CL scenarios: task incremental, class incremental and domain incremental.

[37] empirically analyzes and criticizes some common experimental settings, including the multi-head

evaluation [18] with an exclusive output layer for each task and the use of permuted-type datasets (e.g.,

permuted MNIST). However, the analysis in these three works is limited to small datasets such as MNIST

and Fashion-MNIST. Another two empirical studies on the performance of CL include [124, 73], but only

a small number of CL methods are compared. The first extensive comparative CL survey with empirical

analysis is presented in [26] which focuses on the task incremental setting with the multi-head evaluation,

whereas our work addresses more practical and realistic settings, namely Online Class Incremental (OCI)

and Online Domain Incremental (ODI).

2.3 Online Class/Domain Incremental Learning

2.3.1 Problem Definition

We consider the supervised image classification problem with an online (potentially infinite) non-i.i.d

stream of data, following the recent CL literature [6, 8, 122, 87]. Formally, we define a data stream of
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Scenario
Difference between Di−1 and Di Task-ID Online

P (Xi−1) 6= P (Xt) P (Yi−1) 6= P (Yi) {Yi−1} 6= {Yi}
Task Incremental 3 3 3 Train & Test No
Class Incremental 3 3 No Optional

Domain Incremental 3 No Optional

Table 2.1: Three continual learning scenarios based on the difference between Di−1 and Di, following [58].
P (X) is the input data distribution; P (Y ) is the target label distribution; {Yi−1} 6= {Yi} denotes that
output space are from a disjoint space which is separated by task-ID.

unknown distributions D = {D1, . . . , DN} over X × Y , where X and Y are input and output random

variables respectively, and a neural network classifier parameterized by θ, f : X 7→ RC where C is the

number of classes observed so far as in [87]. At time t, a CL algorithm ACL receives a mini-batch of

samples (x i
t , y i

t ) from the current distribution Di, and the algorithm only sees this mini-batch once.

An algorithm ACL is defined with the following signature:

ACLt : 〈ft−1, (xt , yt),Mt−1〉 → 〈ft,Mt〉 (2.1)

Where:

• ft is the classifier at time step t.

• (x i
t , y i

t ) is a mini-batch received at time t from Di which contains {(x i
tj , y

i
tj ) | j ∈ [1, . . . , b]} where

b is the mini-batch size.

• Mt is an external memory which can be used to store a subset of the training samples or other

useful data (e.g., the classifier from previous time step as in LwF [91]).

Note that we assume, for simplicity, a locally i.i.d stream of data where each task distribution Di is

stationary as in [103, 19]; however, this framework can also accommodate the setting in which samples

are drawn non-i.i.d from Di as in [41, 50], where concept drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new samples from the data stream

without interfering with the performance of previously observed samples. Note that unless the current

samples are stored in Mt, A
CL will not have access to these sample in the future. Formally, at time step

τ , ACL tries to minimize the loss incurred by all the previously seen samples with only access to the

current mini-batch and data from Mτ−1:

minθ

τ∑
t=1

E(xt,yt)

[
`
(
fτ (xt; θ) , yt

)]
(2.2)

Recently, [58, 150] have categorized the CL problem into three scenarios based on the difference

between Di−1 and Di. Table 2.1 summarizes the differences between the three scenarios, i.e., task

incremental, class incremental and domain incremental. For task incremental, the output spaces are

separated by task-IDs and are disjoint between Di−1 and Di. We denote this setting as {Yi−1} 6= {Yi},
which in turn leads to P (Yi−1) 6= P (Yi). In this setting, task-IDs are available during both train and

test times. For class incremental, mutually exclusive sets of classes comprise each data distribution Di,

meaning that there is no duplicated class among different task distributions. Thus P (Yi−1) 6= P (Yi),
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Task Task Incremental Class Incremental Domain Incremental

Di−1
x: x: x:

y: Bird Dog y: Bird Dog y: Bird Dog
task-ID(test) i-1 Unknown Unknown

Di

x: x: x:

y: Ship Guitar y: Ship Guitar y: Bird Dog
task-ID(test) i Unknown Unknown

Table 2.2: Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and
task identity). The main distinction between task incremental and class incremental is the availability
of task-ID. The main difference between class incremental and domain incremental is that, in class
incremental, a new task contains completely new classes, whereas domain incremental, a new task
consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

but the output space is the same for all distributions since this setting adopts the single-head evaluation

where the model needs to classify all labels without a task-ID. Domain incremental represents the setting

where input distributions are different, while the output spaces and distribution are the same. Note that

task IDs are not available for both class and domain incremental. Table 2.2 shows examples of these

three scenarios. Following this categorization, the settings we focus in this work are known as Online

Class Incremental (OCI) and Online Domain Incremental (ODI).

2.3.2 Metrics

Besides measuring the final accuracy across tasks, it is also critical to assess how fast a model learns,

how much the model forgets and how well the model transfers knowledge from one task to another. To

this end, we use five standard metrics in the CL literature to measure performance: (1) the average

accuracy for overall performance [19]; (2) the average forgetting to measure how much of the acquired

knowledge the model has forgotten [18]; (3) the forward transfer and (4) the backward transfer to assess

the ability for knowledge transfer [87, 103]; (5) the total running time, including training and testing

times.

Formally, we define ai,j as the accuracy evaluated on the held-out test set of task j after training the

network from task 1 through to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (2.3). When i = T , AT represents the average accuracy

by the end of training with the whole data sequence (see example in Table 2.3).

Average Accuracy(Ai) =
1

i

i∑
j=1

ai,j (2.3)

Average Forgetting at task i is defined as Eq. (2.4). fi,j represents how much the model has forgot

about task j after being trained on task i. Specifically, max
l∈{1,··· ,k−1}

(al,j) denotes the best test accuracy

the model has ever achieved on task j before learning task k, and ak,j is the test accuracy on task j after

learning task k.
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a te1 te2 . . . teT−1 teT

tr1 a1,1 a1,2 . . . a1,T−1 a1,T

tr2 a2,1 a2,2 . . . a2,T−1 a2,T

. . . . . . . . . . . . . . . . . .
trT−1 aT−1,1 aT−1,2 . . . aT−1,T−1 aT−1,T

trT aT,1 aT,2 . . . aT,T−1 aT,T

Table 2.3: Accuracy matrix following the notations in [87]. tri and tei denote training and test set of
task i. AT is the average of accuracies in the box. BWT+ is the average of accuracies in purple and
FWT is the average of accuracies in green.

Average Forgetting(Fi) =
1

i− 1

i−1∑
j=1

fi,j

where fk,j = max
l∈{1,··· ,k−1}

(al,j)− ak,j ,∀j < k (2.4)

Positive Backward Transfer(BWT+) measures the positive influence of learning a new task on

preceding tasks’ performance (see example in Table 2.3).

BWT+ = max(

∑T
i=2

∑i−1
j=1

(
ai,j − aj,j

)
T (T−1)

2

, 0) (2.5)

Forward Transfer(FWT ) measures the positive influence of learning a task on future tasks’ per-

formance (see example in Table 2.3).

FWT =

∑j−1
i=1

∑T
j=1 ai,j

T (T−1)
2

(2.6)

2.4 Hyperparameter Tuning for Online Continual Learning

In practice, most CL methods have to rely on well-selected hyperparameters to effectively balance the

trade-off between stability and plasticity. Hyperparameter tuning, however, is already a challenging task

in learning conventional deep neural network models, which becomes even more complicated in the online

CL setting. Meanwhile, a large volume of CL works still tune hyperparameters in an offline manner by

sweeping over the whole data sequence and selecting the best hyperparameter set with grid-search on a

validation set. After that, metrics are reported on the test set with the selected set of hyperparameters.

This tuning protocol violates the online CL setting where a classifier can only make a single pass over

the data, which implies that the reported results in the CL literature may be too ideal and cannot be

reproduced in real online CL applications.

Recently, several hyperparameter tuning protocols that are useful for CL settings have been proposed.

[124] introduces a tuning protocol for two tasks (D1 and D2). Firstly, they determine the best combi-

nation of model hyperparameters using D1. Then, they tune the learning rate to be used for learning

D2 such that the test accuracy on D2 is maximized. [26] proposes another protocol that dynamically

determines the stability-plasticity trade-off. When the model receives a new task, the hyperparameters

are set to ensure minimal forgetting of previous tasks. If a predefined threshold for the current task’s

performance is not met, the hyperparameters are adjusted until achieving the threshold. While the
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aforementioned protocols assume the data of a new task is available all at once, [19] presents a protocol

targeting the online CL. Specifically, a data stream is divided into two sub-streams — DCV , the stream

for cross-validation and DEV , the stream for final training and evaluation. Multiple passes over DCV

are allowed for tuning, but a CL algorithm can only perform a single pass over DEV for training. The

metrics are reported on the test sets of DEV . Since the setting of our interest in this work is the online

CL, we adopt the protocol from [19] for our experiments. We summarize the protocol in Algorithm 1.

Algorithm 1: Hyperparameter Tuning Protocol
Input : Hyperparameter set P
Require: DCV data stream for tuning, DEV data stream for learning & testing
Require: f classifier, ACL CL algorithm

1 for p ∈ P do . Multiple passes over DCV for tuning

2 for i ∈ {1, . . . , TCV } do . Single pass over DCV with p
3 for Bn ∼ DCVi do
4 ACL(f,Bn, p)

5 Evaluate(f,DCVtest) . Store performance on test set of DCV

6 Best hyperparameters, p∗p∗p∗ ← based on Average Accuracy of DCVtest, see Eq.(2.3)

7 for i ∈ {1, . . . , TEV } do . Learning over DEV

8 for Bn ∼ DEVi do . Single pass over DEV with p∗

9 ACL(f,Bn, p∗p∗p∗)

10 Evaluate(f,DEVtest)

11 Report performance on DEVtest

2.5 Overview of Continual Learning Techniques

A broad range of methods have been introduced recently to address the CL problem, but due to the

plethora of settings in CL, the assumptions that each method makes are very different. Some methods

have a better ability to generalize to different CL settings because they require less supervisory signals

during both training and inference time. For example, ER [20] is proposed in the task incremental

setting, but it can easily be used in all other CL settings since it does not need any additional super-

visory signals. However, there is no systematic summary of what supervisory signals are required for

each method, even though keeping track of them is critical for fair comparison and to understand the

generalization and limitations of each method. Moreover, CL methods typically can be taxonomized

into three major categories based on the techniques they use: regularization-based, memory-based and

parameter-isolation-based [26, 121], and an increasing number of recent works simultaneously apply

multiple techniques to tackle the CL problem. In this section, we comprehensively summarize recently

proposed methods based on techniques they use and supervisory signals required at training and inference

time (see Table 2.4).

Supervisory Signals The most important supervisory signal is task-ID. When task-ID is available,

a training or testing sample is given as (x, y, t) instead of (x, y) where t is the task-ID. For the task

incremental setting, task-ID is available at both training and inference time. In terms of the class

incremental setting, task-ID is not available at both inference time but can be inferred at training time

as each task has disjoint class labels, while in domain incremental setting, task-ID is not available at

training and inference time. Other supervisory signals include a natural language description of the task

or a matrix specifying the attribute values of the objects to be recognized in the task [19].
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Moreover, a method is online-able if it does not need to revisit samples it has processed before, which

requires the model to learn efficiently from one pass of the data. For example, the herding-based memory

update strategy proposed in iCaRL [130] needs all the samples from a class to select a representative

set, and therefore, methods using this strategy are not online-able.

Techniques Regularization techniques impose constraints on the update of network parameters to

mitigate catastrophic forgetting. This is done by either incorporating additional penalty terms into the

loss function [84, 5, 166, 133] or modifying the gradient of parameters during optimization [103, 19, 54].

Knowledge Distillation (KD) [55] is an effective way for knowledge transfer between networks.

It has been widely adopted in CL methods [17, 91, 157, 128], and it is often considered as one of the

regularization techniques. Due to the prevalence of KD in CL methods, we list it as a separate technique

in Table 2.4. One shortcoming of regularization-based techniques including KD is that when the data

stream is long, it is difficult to strike a balance between the regularization and the current learning.

Memory-based techniques store a subset of samples from previous tasks for either replay while

training on new task [20, 6, 8] or regularization purpose [117, 103, 149]. These methods become infeasible

when storing raw samples is not possible due to privacy or storage concerns.

Instead of saving the raw samples, an alternative is Generative Replay which trains a deep gener-

ative model such as GAN [44] to generate pseudo-data that mimic past data for replay [144, 158, 151].

The main disadvantages of generative replay are that it takes long time to train such models, and that it

is not a viable option for more complex datasets given the current state of deep generative models [86, 6].

Parameter-isolation (PI)-based techniques bypass interference by allocating different parameters

to each task. PI can be subdivided into Fixed Architecture (FA) that only activates relevant parameters

for each task without modifying the architecture [106, 39, 142], and Dynamic Architecture (DA) that

adds new parameters for new tasks while keeping old parameters unchanged [139, 163, 7]. Most previous

works require the task-ID at inference time, and a few recent methods have been introduced to predict

without task-ID [85, 126].

For a more detailed discussion of these techniques, we refer the reader to the recent CL surveys [26,

121, 87].

2.6 Compared Methods

2.6.1 Regularization-based methods

Elastic Weight Consolidation (EWC) EWC [77] incorporates a quadratic penalty to regularize

the update of model parameters that were important to past tasks. The importance of parameters is

approximated by the diagonal of the Fisher Information Matrix F . Assuming a model sees two tasks A

and B in sequence, the loss function of EWC is:

L(θ) = LB(θ) +
∑
j

λ

2
Fj

(
θj − θ∗A,j

)2

(2.7)

where LB(θ) is the loss for task B, θ∗A,j is the optimal value of jth parameter after learning task A

and λ controls the regularization strength. There are three major limitations of EWC: (1) It requires

storing the Fisher Information Matrix for each task, which makes it impractical for a long sequence of
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Settings Techniques

Methods t-ID free(test) t-ID free(train) Online-able Reg Mem KD PI(FA) PI(DA) Generative

MIR[6], GSS[8], ER[20]

3 3 3

3
GDumb[125], DER[13], MER[131]

CBRS[25], GMED[66], PRS[75]

La-MAML[46], MEFA[61], CBO[12]

MERLIN[67] 3 3

CN-DPM[85], TreeCNN[136] 3

A-GEM[19], GEM[103], VCL[117] 3 3

WA[169], BiC[157], LUCIR[57]
3 3

IL2M[10], ILO[51]

LwF-MC[130], LwM[29], DMC[168] 3

SRM[132], AQM[14] 3 3

EWC++[18] 3

AR1[107] 3 3

EEIL[17], iCaRL[130], MCIL[100]

3 3 7

3 3

SDC[164] 3

DGR[144] 3

DGM[119] 3 3 3

ICGAN[159], RtF[151] 3 3

iTAML[127],CCG[2] 3 7 3 3 3

Table 2.4: Summary of recently proposed CL methods based on supervisory signals required and tech-
niques they use. t-ID free(test/train) means task-ID is not required at test/train time.

tasks or models with millions of parameters. (2) It needs an extra pass over each task at the end of

training, leading to its infeasibility for the online CL setting. (3) Assuming the Fisher to be diagonal

may not be accurate enough in practice. Several variants of EWC are proposed lately to address these

limitations [141, 18, 97]. As we use the online CL setting, we compare EWC++, an efficient and online

version of EWC that keeps a single Fisher Information Matrix calculated by moving average. Specifically,

given F t−1 at t− 1, the Fisher Information Matrix at t is updated as:

F t = αF ttmp + (1− α)F t−1 (2.8)

where F ttmp is the Fisher Information Matrix calculated with the current batch of data and α ∈ [0, 1] is

a hyperparameter controlling the strength of favouring the current F t.

Learning without Forgetting (LwF) LwF [91] utilizes knowledge distillation [55] to preserve knowl-

edge from past tasks in the multi-head setting [18]. In LwF, the teacher model is the model after learning

the last task, and the student model is the model trained with the current task. Concretely, when the

model receives a new task (Xn, Yn), LwF computes Yo, the output of old tasks for the new data Xn.

During training, LwF optimizes the following loss:

L(θ) =

(
λoLKD

(
Yo, Ŷo

)
+ LCE

(
Yn, Ŷn

)
+R (θ)

)
(2.9)

where Ŷo and Ŷn are the predicted values of the old task and new task using the same Xn. LKD is

the knowledge distillation loss incorporated to impose output stability of old tasks with new data and

LCE is the cross-entropy loss for the new task. R is a regularization term, and λo is a hyperparameter

controlling the strength of favouring the old tasks over the new task. A known shortcoming of LwF is its
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heavy reliance on the relatedness between the new and old tasks. Thus, LwF may not perform well when

the distributions of the new and old tasks are different [91, 130, 7]. To apply LwF in the single-head

setting where all tasks share the same output head, a variant of LwF (LwF.MC) is proposed in [130],

and we evaluate LwF.MC in this work.

2.6.2 Memory-based Methods

A generic online memory-based method is presented in Algorithm 2. For every incoming mini-batch,

the algorithm retrieves another mini-batch from a memory buffer, updates the model using both the

incoming and memory mini-batches and then updates the memory buffer with the incoming mini-batch.

What differentiate various memory-based methods are the memory retrieval strategy (line 3) [6, 105],

model update (line 4) [19, 103] and the memory update strategy (line 5) [25, 75, 8].

Algorithm 2: Generic online Memory-based method

Input : Batch size b, Learning rate α
Initialize: Memory M← {} ∗M ; Parameters θ; Counter n← 0

1 for t ∈ {1, . . . , T} do
2 for Bn ∼ Dt do
3 BM←MemoryRetrieval(Bn,M)
4 θ ← ModelUpdate(Bn ∪BM, θ, α)
5 M← MemoryUpdate(Bn,M)
6 n← n+ b

7 return θ

Averaged GEM (A-GEM) A-GEM [19] is a more efficient version of GEM [103]. Both methods

prevent forgetting by constraining the parameter update with the samples in the memory buffer. At

every training step, GEM ensures that the loss of the memory samples for each individual preceding

task does not increase, while A-GEM ensures that the average loss for all past tasks does not increase.

Specifically, let g be the gradient computed with the incoming mini-batch and gref be the gradient

computed with the same size mini-batch randomly selected from the memory buffer. In A-GEM, if

gT gref ≥ 0, g is used for gradient update but when gT gref < 0, g is projected such that gT gref = 0.

The gradient after projection is:

g̃ = g − g>gref
g>refgref

gref (2.10)

As we can see, A-GEM focuses on ModelUpdate in Algorithm 2, and we apply reservoir sampling [154]

in MemoryUpdate and random sampling in MemoryRetrieval for A-GEM.

Incremental Classifier and Representation Learning (iCaRL) iCaRL [130] is a replay-based

method that decouples the representation learning and classification. For representation learning, the

training set is constructed by mixing all the samples in the memory buffer and the current task samples.

The loss function includes a classification loss to encourage the model to predict the correct labels for

new classes and a KD loss to prompt the model to reproduce the outputs from the previous model for old

classes. Note that the training set is imbalanced since the number of new-class samples in the current
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task is larger than that of the old-class samples in the memory buffer. iCaRL applies the binary cross

entropy (BCE) for each class to handle the imbalance, but BCE may not be effective in addressing the

relationship between classes. For the classifier, iCaRL uses a nearest-class-mean classifier [110] with the

memory buffer to predict labels for test images. Moreover, it proposes a MemoryUpdate method based

on the distance in the latent feature space with the inspiration from [155]. For each class, it looks for a

subset of samples whose mean of latent features are closest (in the Euclidean distance) to the mean of

all the samples in this class. However, this method requires all samples from every class, and therefore

it cannot be applied in the online setting. As such, we modify iCaRL to use reservoir sampling [154],

which has been shown effective for MemoryUpdate [20].

Experience Replay (ER) ER refers to a simple but effective replay-based method that has been

discussed in [20, 47]. It applies reservoir sampling [154] in MemoryUpdate and random sampling in

MemoryRetrieval . Reservoir sampling ensures every streaming data point has the same probability,

memsz/n, to be stored in the memory buffer, where memsz is the size of the buffer and n is the number

of data points observed up to now. We summarize the detail in Algorithm 3. For ModelUpdate, ER

simply trains the model with the incoming and memory mini-batches together using the cross-entropy

loss. Despite its simplicity, recent research has shown that ER outperforms many specifically designed

CL approaches with and without a memory buffer [20].

Algorithm 3: Reservoir sampling

1 procedure MemoryUpdate (memsz, t, n,B)
33 j ← 0
55 for (x, y) in B do
77 M ← |M| . Number of samples currently stored in the memory

99 if M < mem−sz then
1111 M.append (x, y, t)
12 else
1414 i = randint(0, n+ j)
1616 if i < mem−sz then
1818 M[i]← (x, y, t) . Overwrite memory slot

2020 j ← j + 1

21 return M

Maximally Interfered Retrieval (MIR) MIR [6] is a recently proposed replay-based method aiming

to improve the MemoryRetrieval strategy. MIR chooses replay samples according to the loss increases

given the estimated parameter update based on the incoming mini-batch. Concretely, when receiving a

mini-batch Bn, MIR performs a virtual parameter update θv ← SGD(Bn, θ). Then it retrieves the top-k

samples from the memory buffer with the criterion s(x) = l
(
fθv (x), y

)
− l
(
fθ(x), y

)
, where x ∈ M and

M is the memory buffer. Intuitively, MIR selects memory samples that are maximally interfered (the

largest loss increases) by the parameter update with the incoming mini-batch. MIR applies reservoir

sampling in MemoryUpdate and replays the selected memory samples with new samples in ModelUpdate.
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Gradient based Sample Selection (GSS) GSS [8] is another replay-based method that focuses on

the MemoryUpdate strategy1. Specifically, it tries to diversify the gradient directions of the samples in

the memory buffer. To this end, GSS maintains a score for each sample in the buffer, and the score

is calculated by the maximal cosine similarity in the gradient space between the sample and a random

subset from the buffer. When a new sample arrives and the memory buffer is full, a randomly selected

subset is used as the candidate set for replacement. The score of a sample in the candidate set is

compared to the score of the new sample, and the sample with a lower score is more likely to be stored

in the memory buffer. Algorithm 4 shows the main steps of this update method. Same as ER, GSS uses

random sampling in MemoryRetrieval .

Algorithm 4: GSS-Greedy

22 Input : n,M
44 Initialize: M, C
66 Receive: (x, y)
88 Update: (x, y,M)

1010 X,Y ← RandomSubset (M,n)
1212 g ← ∇`θ(x, y);G← ∇θ`(X,Y )

1414 c = maxi

(
〈g,Gi〉
‖g‖‖Gi‖

)
+ 1 . make the score positive

1616 if len(M) >= M then
1818 if c < 1 then

. cosine similarity < 0
2020 i ∼ P (i) = Ci/

∑
j Cj

2222 r ∼ uniform (0, 1)
2424 if r < Ci/ (Ci + c) then
2626 Mi ← (x, y); Ci ← c

2828 end if

3030 end if

3232 else
3434 M←M∪ {(x, y)}; C ∪ {c}
3636 end if

Greedy Sampler and Dumb Learner (GDumb) GDumb [125] is not specifically designed for

CL problems but shows very competitive performance. Specifically, it greedily updates the memory

buffer from the data stream with the constraint to keep a balanced class distribution (Algorithm 5). At

inference, it trains a model from scratch using the balanced memory buffer only.

2.6.3 Parameter-isolation-based Methods

Continual Neural Dirichlet Process Mixture (CN-DPM) CN-DPM [85] is one of the first dy-

namic architecture methods that does not require a task-ID. The intuition behind this method is that if

we train a new model for a new task and leave the existing models intact, we can retain the knowledge of

the past tasks. Specifically, CN-DPM is comprised of a group of experts, where each expert is responsible

for a subset of the data and the group is expanded based on the Dirichlet Process Mixture [38] with

1[8] proposes two gradient-based methods, and we select the more efficient one with better performance, dubbed GSS-
Greedy
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Algorithm 5: Greedy Balancing Sampler

22 Init: counter C0 = {},D0 = {} with capacity k. Online samples arrive from t = 1
44 function SAMPLE (xt, yt,Dt−1,Yt−1) . Input: New sample and past state

66 kc = k

|Yt−1|
88 if yt /∈ Yt−1 or Ct−1 [yt] < kc then

1010 if
∑
i Ci >= k then

. If memory is full, replace

1212 yr = argmax (Ct−1) . Select largest class, break ties randomly

1414 (xi, yi) = Dt−1 · random (yr) . Select random sample from class yr
1616 Dt =

(
Dt−1 − (xi, yi)

)
∪ (xt, yt)

1818 Ct [yr] = Ct−1 [yr]− 1

2020 else
. If memory has space, add

2222 Dt = Dt−1 ∪ (xt, yt)

2424 end if
2626 Yt = Yt−1 ∪ yt
2828 Ct [yt] = Ct−1 [yt] + 1

3030 end if
3232 return Dt
3434 end function

Method e(n, o) e(n, n) e(o, o) e(o, n) er(n, o) er(o, n)

A-GEM 0 177 0 9500 0% 100%
ER 37 148 2269 5852 20% 72%

MIR 54 113 2770 5330 32% 66%

Table 2.5: Error analysis of CIFAR-100 by the end of training with M=5k. e(n, o) & e(n, n) represent the
number of test samples from new classes that are misclassified as old classes and new classes, respectively.
Same notation rule is applied to e(o, o) & e(o, n).

Sequential Variational Approximation [92]. Each expert consists of a discriminative model (classifier)

and a generative model (VAE [76] is used in this work). The goal of CN-DPM is to model the overall

conditional distribution as a mixture of task-wise conditional distributions as the following, where K is

the number of experts in the current model:

p(y | x) =

K∑
k=1

p(y | x, z = k)︸ ︷︷ ︸
discriminative

generative︷ ︸︸ ︷
p(x | z = k) p(z = k)∑K

k′=1 p
(
x | z = k′

)
p (z = k′)

(2.11)

2.7 Tricks for Memory-based Methods in the Online Class In-

cremental Setting

In class incremental learning, old class samples are generally not available while training on new class

samples. Although keeping a portion of old class samples in a memory buffer has been proven effective

[20, 130], the class imbalance is still a serious problem given a limited buffer size. Moreover, multiple

recent works have revealed that class imbalance is one of the most crucial causes of catastrophic forgetting

[17, 157, 57]. To alleviate the class imbalance, many simple but effective tricks have been proposed as
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Figure 2.1: Error analysis for three memory-based methods(A-GEM, ER and MIR) with 5k memory
buffer on Split CIFAR-100 described in Section 2.8.1.

the building blocks for CL methods by modifying the loss function, post-processing, or using different

types of classifiers.

In Section 2.7.1 and 2.7.2, we perform quantitative error analysis and disclose how class imbalance

results in catastrophic forgetting. Section 2.7.3 explains the compared tricks in detail.

2.7.1 Error Analysis of Memory-based Methods

We perform quantitative error analysis for three memory-based methods with 5k memory buffer (A-

GEM, ER and MIR) on Split CIFAR-100 described in Section 2.8.1. We define e(n, o) and e(n, n) as the

number of test samples from new classes that are misclassified as old classes and new classes, respectively.

The same notation rule is applied to e(o, o) and e(o, n). Also, er(n, o) denotes the ratio of new class test

samples misclassified as old classes to the total number of new class test samples. er(o, n) is similarly

defined.

As shown in Table 2.5, all methods have strong bias towards new classes by the end of the training:

A-GEM classifies all old class samples as new classes; ER and MIR misclassify 72% and 66% old class

samples as new classes, respectively. Moreover, as we can see in Fig. 2.1a, er(o, n) is higher than er(n, o)

most of the times along the training process for all three methods. These phenomena are not specific

to the OCI setting, and [4, 169] also found similar results in the offline class incremental learning.

Additionally, we easily find that ER and MIR are always better than A-GEM in terms of er(o, n). This

is because ER and MIR use the memory samples more directly, namely replaying them with the new
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class samples. The indirect use of memory samples in A-GEM is less effective in the class incremental

setting.

2.7.2 Biased Fully Connected Layer

To better understand how class imbalance affects the learning performance, we define the following

notations. The convolutional neural network (CNN) classification model can be split into a feature

extractor φ(·) : x 7→ Rd where d is the dimension of the feature vector of image x, and a fully-connected

(FC) layer with Softmax output. The output of the FC layer is obtained with:

logits(x) = WTφ(x) (2.12)

o(x) = Softmax(logits(x))) (2.13)

where W ∈ Rd×(|Cold|+|Cnew|), and Cold and Cnew are the sets of old and new classes respectively, with

| · | denoting the number of classes in each set. Wi represents the weight vector for class i. For notational

brevity, W also contains the bias terms.

We start by analyzing the mean of logits for new and old classes. As shown in Fig. 2.1b, the

mean of logits for new classes is always much higher than that for old classes, which explains the high

er(o, n) for all three methods. As we can see from Eq. (2.12), both feature extractor φ(x) and FC

layer W may potentially contribute to the logit bias. However, previous works have found that even a

small memory buffer (implying high class imbalance) can greatly alleviate catastrophic forgetting in the

multi-head setting where the model can utilize the task-id to select the corresponding FC layer for each

task [20, 19]. This suggests that the feature extractor is not heavily affected by the class imbalance, and

therefore we hypothesize that the FC layer is biased.

To validate the hypothesis, we plot the means of bias terms and weights in the FC layer for new and

old classes in Fig. 2.1c and 2.1d. As we can see, the means of weights for the new classes are much higher

than those for the old classes, and the means of bias terms for the new classes are also higher than those

for the old classes most of the times. Since the biased weights and bias terms in W have direct impacts

on the output logits, the model has a higher chance of predicting a sample as new classes. [4, 157, 169]

have also verified the same hypothesis but with different validation methods.

A recent work reveals how does class imbalance result in a biased W [4]. We denote si = Wi
Tφ(x)

as the logit of sample x for class i. The gradient of the cross-entropy loss LCE with respect to Wi for

the Softmax output is:

∂LCE

∂Wi
=

(
esi∑

j∈Cold+Cnew
esj
− 1{i=y}

)
φ(x) (2.14)

where y is the ground-truth class and 1{i=y} is the indicator for i = y. Since ReLU is often used as the

activation function for the embedding networks [52], φ(x) is always positive. Therefore, the gradient is

always positive for i 6= y. If i belongs to old classes, i 6= y will hold most of the time as the new class

samples significantly outnumber the old class samples during training. Thus, the logit for class i will

keep being penalized during the gradient descent. As a result, the logits for the old classes are prone to

be smaller than those for the new classes, and the model is consequently biased towards new classes.

Other than the bias related to the Softmax classifier mentioned above, another problem induced by

class imbalance is under-representation of the minority [33, 161], where minority classes do not show
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a discernible pattern in the latent feature space [75]. The under-representation introduces additional

difficulty for other classifiers apart from the Softmax classifier, such as nearest-class-mean [110] and

cosine-similarity-based classifier [43].

2.7.3 Compared Tricks

To mitigate the strong bias towards new classes due to class imbalance, multiple methods have been

proposed lately [83, 69, 169, 10, 34]. For example, LUCIR [57] proposes three tricks: cosine normaliza-

tion to balance class magnitudes, a margin ranking loss for inter-class separation, and a less-forgetting

constraint to preserve the orientation of features. BiC [157] trains an additional linear layer to remove

bias with a separate validation set. We compare seven simple (effortless integration without additional

resources) but effective (decent improvement) tricks in this work.

Labels Trick (LB) [167] proposes to consider only the outputs for the classes in the current mini-

batch when calculating the cross-entropy loss, in contrast to the common practice of considering outputs

for all the classes. To achieve this, the outputs that do not correspond to the classes of the current

mini-batch are masked out when calculating the loss.

Although the author did not demonstrate the motivation of this trick, we can easily find the rationale

based on the analysis in Section 2.7.2. Masking out all the outputs that don’t match the classes in the

current mini-batch is equivalent to changing the loss function to:

LCE(xi, yi) = − log

(
esyi∑

j∈Ccur
esj

)
(2.15)

where Ccur denotes the classes in the current mini-batch. We can see that ∂LCE

∂sj
= 0 for j /∈ Ccur, and

therefore training with the current mini-batch will not overly penalize the logits for classes that are not

in the mini-batch.

Knowledge Distillation with Classification Loss (KDC) KD [55] is an effective way for knowl-

edge transfer between networks. Multiple recent works have proposed different ways to combine the

KD loss with the classification loss [130, 17, 62]. In this part, we compare the methods from [157].

Specifically, the loss function is given as:

L(x, y) = λLCE(x, y) + (1− λ)LKD(x) (2.16)

where λ is set to |Cnew|
|Cold|+|Cnew| . Note that (x, y) is from both new class data from the current task and

old class data from the memory buffer.

As shown in Table 2.9, however, this method does not perform well in our experiment setting,

especially with a large memory buffer. We identify λ as the key issue. We find that the accuracy for new

class samples becomes almost zero around the end of training because λ is very small. In other words,

LKD dominates the loss, and the model cannot learn any new knowledge. Hence, we suggest setting λ

to
√

|Cnew|
|Cold|+|Cnew| . We denote the trick with this modification as KDC*.

Multiple Iterations (MI) Most of the previous works only perform a single gradient update on the

incoming mini-batch in the online setup. [6] suggests performing multiple gradient updates to maximally



Chapter 2. Comparative Empirical Study of Online Continual Learning 19

Dataset #Task #Train/task #Test/task #Class Image Size Setting

Split MiniImageNet 20 2500 500 100 3x84x84 OCI
Split CIFAR-100 20 2500 500 100 3x32x32 OCI
CORe50-NC 9 12000∼24000 4500∼9000 50 3x128x128 OCI
NS-MiniImageNet 10 5000 1000 100 3x84x84 ODI
CORe50-NI2 8 15000 44972 50 3x128x128 ODI

Table 2.6: Summary of dataset statistics

utilize the current mini-batch. Particularly for replay methods, additional updates with different replay

samples can improve performance. We run 5 iterations per incoming mini-batch and retrieve different

memory samples for each iteration in this work.

Nearest Class Mean (NCM) Classifier To tackle the biased FC layer, one can replace the FC

layer and Softmax classifier with another type of classifier. Nearest Class Mean classifier (NCM) [110]

is a popular option in CL [130, 164]. To make prediction for a sample x, NCM computes a prototype

vector for each class and assigns the class label with the most similar prototype:

µy =
1∣∣My

∣∣ ∑
xm∈My

φ(xm) (2.17)

y∗ = argmin
y=1,...,t

∥∥φ(x)− µy
∥∥ (2.18)

In the class incremental setting, the true prototype vector for each class cannot be computed due to the

unavailability of the training data for previous tasks. Instead, the prototype vectors can be approximated

using the data in the memory buffer. In Eq. (2.17), My denotes the memory samples of class y.

Separated Softmax (SS) Since training the whole FC layer with one Softmax output layer results

in bias as explained in Section 2.7.2, SS [4] employs two Softmax output layers: one for new classes and

another one for old classes. The loss function can be calculated as below:

L(xi, yi)

=− log

(
esyi∑

j∈Cold
esj

)
· 1 {yi ∈ Cold} − log

(
esyi∑

j∈Cnew
esj

)
· 1 {yi ∈ Cnew}

(2.19)

Depending on whether yi ∈ Cnew or Cold, the corresponding Softmax is used to compute the cross-

entropy loss. We can find that ∂L
∂sj

= 0 for j ∈ Cold and yi ∈ Cnew. Thus, training with new class

samples will not overly penalize the logits for the old classes.

Review Trick (RV) To alleviate the class imbalance, [17] proposes an additional fine-tuning step

with a small learning rate, which uses a balanced subset from the memory buffer and the training set

of the current task. A temporary distillation loss for new classes is applied to avoid forgetting the new

classes during the fine-tuning phase mentioned above. A similar yet simplified version, dubbed Review

Trick, is applied in the winning solution in the continual learning challenge at CVPR2020 [104]. At

the end of learning the current task, the review trick fine-tunes the model with all the samples in the

memory buffer using only the cross-entropy loss. In this work, we compare the review trick from [104]

with a learning rate 10 times smaller than the training learning rate.
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2.8 Experiments

Section 2.8.1 explains the general setting for all experiments. Then, we focus on the OCI setting

in Section 2.8.2 and 2.8.3: we evaluate all the compared methods and baselines in Section 2.8.2 and

investigate the effectiveness of the seven tricks in Section 2.8.3. In Section 2.8.4, we assess the compared

methods in the ODI setting to investigate their abilities to generalize, and Section 2.8.5 provides general

comments on the surveyed methods and tricks.

2.8.1 Experiment Settings

Datasets

We evaluate the nine methods summarized in Section 2.6 and additional two baselines on three class

incremental datasets. We also propose a new domain incremental dataset based on Mini-ImageNet and

examine the compared methods in the ODI setting to see how well the methods can generalize to this

setting. The summary of dataset statistics is provided in Table 2.6.

Class Incremental Datasets

• Split CIFAR-100 is constructed by splitting the CIFAR-100 dataset [79] into 20 tasks with

disjoint classes, and each task has 5 classes. There are 2,500 3×32×32 images for training and 500

images for testing in each task.

• Split MiniImageNet splits MiniImageNet dataset [153], a subset of ImageNet [28] with 100

classes, into 20 disjoint tasks as in [20]. Each task contains 5 classes, and every class consists of

500 3×84×84 images for training and 100 images for testing.

• CORe50-NC [101] is a benchmark designed for class incremental learning with 9 tasks and 50

classes: 10 classes in the first task and 5 classes in the subsequent 8 tasks. Each class has around

2,398 3×128×128 training images and 900 testing images.

Domain Incremental Datasets

• NonStationary-MiniImageNet (NS-MiniImageNet) The most popular domain incremental datasets

are still based on MNIST [81], such as Rotation MNIST [103] and Permutation MNIST [77]. To

evaluate the domain incremental setting in a more practical scenario, we propose NS-MiniImageNet

with three nonstationary types: noise, blur and occlusion. The number of tasks and the strength

of each nonstationary type are adjustable in this dataset. In this survey, we use 10 tasks for each

type, and each task comprises 5,000 3×84×84 training images and 1,000 testing images. As shown

in Table 2.7, the nonstationary strength increases over time, and to ensure a smooth distribution

shift, the strength always increases by the same constant. More details about the nonstationary

strengths used in the experiments can be found in Appendix A.

• CORe50-NI [101] is a practical benchmark designed for assessing the domain incremental learning

with 8 tasks, where each task has around 15,000 training images of 50 classes with different types of

nonstationarity including illumination, background, occlusion, pose and scale. There is one single

test set for all tasks, which contains 44,972 images.

2CORe50-NI uses one test set(44972 images) for all tasks
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Type Task 1 ... Task 5 ... Task 10

Noise ... ...

Blur ... ...

Occlusion ... ...

Table 2.7: Example images of different nonstationary types in NS-MiniImageNet. The nonstationary
strength increases over time, and to ensure a smooth distribution shift, the strength always increases by
the same constant.

Task Order and Task Composition Since the task order and task composition may impact the

performance [101], we take the average over multiple runs for each experiment with different task orders

and composition to reliably assess the robustness of the methods. For CORe50-NC and CORe50-NI,

we follow the number of runs (i.e., 10), task order and composition provided by the authors. For Split

CIFAR-100 and Split MiniImagenet, we average over 15 runs, and the class composition in each task is

randomly selected for each run.

Baselines

We compare the methods we discussed in Section 2.6 with two baselines:

• Finetune greedily updates the model with the incoming mini-batch without considering the pre-

vious task performance. The model suffers from catastrophic forgetting and is regarded as the

lower-bound.

• Offline trains a model using all the samples in a dataset in an offline manner. The baseline is

trained for multiple epochs within each of which mini-batches are sampled i.i.d from differently

shuffled dataset. We train the model for 70 epochs with the mini-batch size of 128.

Other settings

Models Similar to [20, 103], we use the reduced ResNet18 [53] as the base model for all datasets and

methods. The network is trained via the cross-entropy loss with a stochastic gradient descent optimizer

and a mini-batch size of 10. The size of the mini-batch retrieved from the memory buffer is also set to 10,

irrespective of the size of the memory buffer as in [20]. Note that with techniques such as transfer learning

(e.g., using a pre-trained model from ImageNet), data augmentation and deeper network architectures,

it is possible to achieve much higher performance in this setting [102]. However, since those techniques

are orthogonal to our investigation and deviate from the simpler experimental settings of other papers

we cite and compare, we do not use them in our experiments.
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Method Split CIFAR-100 Split Mini-ImageNet CORe50-NC

Finetune 3.7± 0.3 3.4± 0.2 7.7± 1.0
Offline 49.7± 2.6 51.9± 0.5 51.7± 1.8
EWC++ 3.7± 0.4 3.5± 0.4 8.3± 0.3
LwF 7.2± 0.4 7.6± 0.7 7.1± 1.9

Buffer Size M=1k M=5k M=10k M=1k M=5k M=10k M=1k M=5k M=10k

ER 7.6± 0.5 17.0± 1.9 18.4± 1.4 6.4± 0.9 14.5± 2.1 15.9± 2.0 23.5± 2.4 27.5± 3.5 28.2± 3.3
MIR 7.6± 0.5 18.2± 0.8 19.3± 0.7 6.4± 0.9 16.5± 2.1 21.0± 1.1 27.0± 1.6 32.9± 1.7 34.5± 1.5
GSS 7.7± 0.5 11.3± 0.9 13.4± 0.6 5.9± 0.7 11.2± 0.9 13.5± 0.8 19.6± 3.0 22.2± 4.4 21.1± 3.5
iCaRL 16.7± 0.8 19.2± 1.1 18.8± 0.9 14.7± 0.4 17.5± 0.6 17.4± 1.5 22.1± 1.4 25.1± 1.6 22.9± 3.1
A-GEM 3.7± 0.4 3.6± 0.2 3.8± 0.2 3.4± 0.2 3.7± 0.3 3.3± 0.3 8.7± 0.6 9.0± 0.5 8.9± 0.6
CN-DPM 14.0± 1.7 - - 9.4± 1.2 - - 7.6± 0.4 - -
GDumb 10.4± 1.1 22.1± 0.9 28.8± 0.9 8.8± 0.4 21.1± 1.7 31.0± 1.4 15.1± 1.2 28.1± 1.4 32.6± 1.7

Table 2.8: Average accuracy (end of training) for the OCI setting of Split CIFAR-100, Split Mini-
ImageNet and CORe50-NC. Replay-based methods and a strong baseline GDumb show competitive
performance across three datasets.

Other Details We evaluate the performance with 5 metrics we described in Section 2.3.2: Average

Accuracy, Average Forgetting, Forward Transfer, Backward Transfer and Run Time. We use the hyper-

parameter tuning protocol described in Section 2.4 and give each method similar tuning budget. The

details of the implementation including hyperparameter selection can be found in Appendix A.2.

2.8.2 Performance Comparison in the Online Class Incremental Setting

Regularization-based Methods

As shown in Table 2.8, EWC++ has almost the same performance as Finetune in the OCI setting. We

find that the gradient explosion of the regularization terms is the root cause. Specifically, λ in EWC++

controls the regularization strength, and we need a larger λ to avoid forgetting. However, when λ

increases to a certain value, the gradient explosion occurs. If we take θj in Eq. (2.7) as an example, the

regularization term for θj has the gradient λFj(θj − θ∗). Some model weights change significantly when

it receives data with new classes, and therefore the gradients for those weights are prone to explode with

a large λ. The Huber regularization proposed lately could be a possible remedy [95]. Surprisingly, we

also observe that LwF, a method relying on KD, has similar performance as replay-based methods with

a small memory buffer(1k) such as ER, MIR and GSS in Split CIFAR-100 and even outperforms them in

Split Mini-ImageNet. In the larger and more realistic CORe50-NC, however, both EWC++ and LwF fail.

This also confirms the results of three recent studies, where [88] shows the shortcomings of regularization-

based approaches in the class incremental setting, [78] theoretically explains why regularization-based

methods underperform memory-based methods and [11] empirically demonstrates that KD is more useful

in small-scale datasets.

Memory-based Methods

Firstly, A-GEM does not work in this setting as it has almost the same performance as Finetune, implying

that the indirect use of the memory samples is less efficient than the direct relay in the OCI setting.

Secondly, given a small memory buffer in Split CIFAR-100 and Mini-ImageNet, iCaRL—proposed in

2017—shows the best performance. On the other hand, other replay-based methods such as ER, MIR

and GSS do not work well because simply replaying with a small memory buffer yields severe class

imbalance. When equipped with a larger memory buffer (5k and 10k), GDumb—a simple baseline that
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Figure 2.2: The average accuracy measured by the end of each task for the OCI setting with a 5k memory
buffer. More detailed results for different memory buffer sizes are shown in Appendix B.1.

trains with the memory buffer only—outperforms other methods by a large margin. Additionally, as

shown in Fig. 2.2a and Fig. 2.2b, GDumb dominates the average accuracy not only at the end of training

but also at any other evaluation points along the data stream. This raises concerns about the progress

in the OCI setting in the literature. Next, in the larger CORe50-NC dataset, GDumb is less effective

since it only relies on the memory and the memory is smaller in a larger dataset in proportion. MIR is

a robust and strong method as it exhibits remarkable performance across different memory sizes. Also,

even though GSS is claimed to be an enhanced version of ER, ER consistently surpasses GSS across

different memory sizes and datasets, which is also confirmed by other studies [85, 13].

Parameter-isolation-based Methods

As one of the first dynamic-architecture methods without using a task-ID, CN-DPM shows competitive

results in Split CIFAR-100 and Mini-ImageNet but fails in CORe5-NC. The key reason is that CN-DPM

is very sensitive to hyperparameters, and when applying CN-DPM in a new dataset, a good performance

cannot be guaranteed given a limited tuning budget.

Performance on Other Metrics

We show the performance of all five metrics in Fig. 2.3. Generally speaking, we find that a high average

accuracy comes with low forgetting, but methods using KD such as iCaRL and LwF, and dynamic-

architecture methods such as CN-DPM have lower forgetting. The reason for the low forgetting of these

methods is intransigence, the model’s inability to learn new knowledge [18]. For iCaRL and LwF, KD

imposes a strong regularization, which may lead to a lower accuracy on new tasks. For CN-DPM, the

inaccurate expert selector is the cause of the intransigence [85]. Furthermore, most methods have similar

running time except for CN-DPM, GDumb and GSS. CN-DPM requires a significantly longer training

time as it needs to train multiple experts, and each expert contains a generative model (VAE [76]) and a

classifier(10-layer ResNet [53]). GDumb has the second longest running time as it requires training the

model from scratch with the memory at every evaluation point. Lastly, we notice none of the methods

show any forward and backward transfer, which is expected since a model tends to classify all the test

samples as the current task labels due to the strong bias in the last FC layer.
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Figure 2.3: Average Accuracy, Forgetting, Running Time, Forward Transfer and Backward Transfer for
the OCI setting with a 5k memory buffer. Each column represents a metric and each row represents a
dataset. In this setting, none of the methods show any forward or backward transfer.
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Finetune 3.7± 0.3
Offline 49.7± 2.6

Trick A-GEM ER MIR

Buffer Size M=1k M=5k M=10k M=1k M=5k M=10k M=1k M=5k M=10k

N/A 3.7± 0.4 3.6± 0.2 3.8± 0.2 7.6± 0.5 17.0± 1.9 18.4± 1.4 7.6± 0.5 18.2± 0.8 19.3± 0.7
LB 5.0± 0.5 4.6± 0.8 4.9± 0.7 14.0± 2.0 19.0± 2.6 20.4± 1.2 15.1± 0.6 21.1± 0.8 22.5± 0.9
KDC 8.3± 0.7 8.8± 0.7 7.7± 1.1 11.7± 0.8 10.9± 1.9 11.9± 2.2 12.0± 0.5 12.3± 0.7 11.8± 0.6
KDC* 5.6± 0.5 5.8± 0.5 5.8± 0.5 12.6± 0.5 21.2± 1.1 24.2± 1.9 12.4± 0.5 20.7± 0.8 23.2± 1.2
MI 4.0± 0.3 4.0± 0.3 4.0± 0.2 8.6± 0.5 19.7± 0.9 26.4± 1.2 8.5± 0.4 17.7± 1.0 25.9± 1.2
SS 5.0± 0.8 5.2± 0.6 5.1± 0.5 12.3± 2.1 20.9± 1.0 23.1± 1.2 14.0± 0.5 21.6± 0.7 24.5± 0.7
NCM 9.5± 0.9 11.7± 0.6 11.5± 0.7 14.6± 0.7 27.6± 1.0 31.0± 1.0 13.7± 0.5 27.0± 0.5 30.0± 0.6
RV 4.5± 0.4 22.5± 1.3 30.7± 1.2 12.0± 0.8 26.9± 2.8 32.0± 5.3 9.7± 0.5 28.1± 0.6 35.2± 0.5

Best OCI 16.7± 0.8 22.1± 0.9 28.8± 0.9 16.7± 0.8 22.1± 0.9 28.8± 0.9 16.7± 0.8 22.1± 0.9 28.8± 0.9

Table 2.9: Performance of compared tricks for the OCI setting on Split CIFAR-100. We report average
accuracy (end of training) for memory buffer with size 1k, 5k and 10k. Best OCI refers to the best
performance achieved by the compared methods in Table 2.8.

Trick Running Time(s)

M=1k M=5k M=10k

N/A 83 82 84
LB 87 88 89

KDC 105 106 106
KDC* 105 105 107

MI 328 324 325
SS 89 90 90

NCM 126 282 450
RV 98 159 230

Table 2.10: Running time of different tricks applying to ER with different memory sizes on Split CIFAR-
100.

2.8.3 Effectiveness of Tricks

We evaluate Label trick (LB), Knowledge Distillation and Classification (KDC), Multiple Iterations (MI),

Separated Softmax(SS), Nearest Class Mean (NCM) classifier, Review trick(RV) on three memory-based

methods: A-GEM, ER and MIR. The results are shown in Table 2.9 and Fig. 2.4.

Firstly, although all tricks enhance the basic A-GEM, only RV can bring A-GEM closer to ER and

MIR, which reiterates that the direct replay of the memory samples is more effective than the gradient

projection approach in A-GEM.

For replay-based ER and MIR, LB and NCM are the most effective when M=1k and can improve the

accuracy by around 100% (7.6% → 14.5% on average). KDC, KDC* and SS have similar performance

improvement effect and can boost the accuracy by around 64% (7.6% → 12.4% on average). With a

larger memory size, NCM remains very effective, and RV becomes much more helpful. When M=10k,

RV boosts ER’s performance by 74% (18.4% → 32.0%) and improve MIR’s performance by 82% (from

19.3% → 35.2%). Also, KDC fails with a larger memory due to over-regularization of the KD term, and

the modified KDC* has much better performance. Compared with other tricks, MI and RV are more

sensitive to the memory size since these tricks highly depend on the memory. Note that when equipped

with NCM or RV, both ER and MIR can outperform the best performance achieved by the compared

methods (Table 2.8) when M=5k or 10k.

As shown in Table 2.10, the running times of LB, KDC, KDC*, MI and SS do not depend on the

memory size and have a limited increase compared to the baseline. Since NCM needs to calculate the

means of all the classes in the memory and RV requires additional training of the whole memory before
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Method Mini-ImageNet-Noise Mini-ImageNet-Occlusion Mini-ImageNet-Blur CORe50-NI

Finetune 11.1± 1.0 13.8± 1.6 2.4± 0.2 14.0± 2.8
Offline 37.3± 0.8 38.6± 4.7 11.9± 1.0 51.7± 1.8
EWC 12.5± 0.8 14.8± 1.1 2.6± 0.2 11.6± 1.5
LwF 9.2± 0.9 12.8± 0.8 3.4± 0.4 11.1± 1.1

Buffer Size M=1k M=5k M=10k M=1k M=5k M=10k M=1k M=5k M=10k M=1k M=5k M=10k

ER 19.4± 1.3 21.6± 1.1 24.3± 1.2 19.2± 1.5 23.4± 1.4 23.7± 1.1 5.3± 0.6 8.6± 0.8 9.4± 0.7 24.1± 4.2 28.3± 3.5 30.0± 2.8
MIR 18.1± 1.1 22.5± 1.4 24.4± 0.9 17.6± 0.7 22.0± 1.1 23.8± 1.2 5.5± 0.5 8.1± 0.6 9.6± 1.0 26.5± 1.0 34.0± 1.0 33.3± 1.7
GSS 18.9± 0.8 21.4± 0.9 23.2± 1.1 17.7± 0.8 21.0± 2.2 23.2± 1.4 5.2± 0.5 7.6± 0.6 8.0± 0.6 25.5± 2.1 27.2± 2.0 25.3± 2.1
A-GEM 14.0± 1.3 14.6± 0.7 14.2± 1.4 16.4± 0.7 13.9± 2.6 14.4± 2.0 4.4± 0.4 4.4± 0.4 4.3± 0.5 12.4± 1.1 13.8± 1.2 15.0± 2.2
CN-DPM 4.6± 0.5 - - 3.9± 0.8 - - 2.2± 0.2 - - 9.6± 3.9 - -
GDumb 5.4± 1.0 12.5± 0.7 15.2± 0.5 5.4± 0.4 14.2± 0.6 20.2± 0.4 3.3± 0.2 7.5± 0.2 10.0± 0.2 9.6± 1.5 11.2± 2.0 11.5± 1.7

Table 2.11: The Average Accuracy (end of training) for the ODI setting of Mini-ImageNet with three
nonstationary types (Noise, Occlusion, Blur) and CORe50-NI.

evaluation, their running times increase as the memory size grows.

To sum up, all of the tricks are beneficial to the base methods (A-GEM, ER, MIR); NCM is a useful

and robust trick across all memory sizes, while LB and RV are more advantageous in smaller and larger

memory, respectively. The running times of NCM and RV go up with the increase in the memory size,

and other tricks only add a fixed overhead to the running time. We also get similar results in Split

Mini-ImageNet, as shown in Appendix B.

2.8.4 Performance Comparison in the Online Domain Incremental Setting

Since most of the surveyed methods are only evaluated in the class incremental setting in the original

papers, we evaluate them in the ODI setting to investigate their robustness and ability to generalize

to other CL settings. We assess the methods with CORe50-NI—a dataset designed for ODI—and the

proposed NS-MiniImageNet dataset consisting of three nonstationary types: noise, occlusion, and blur

(see Table 2.7). The average accuracy at the end of training is summarized in Table 2.11.

Generally speaking, all replay-based methods (ER, MIR, GSS) show comparable performance across

three memory sizes and outperform all other methods. GDumb, the strong baseline that dominates the

OCI setting in most cases, is no longer as competitive as the replay-based methods and fails completely

in CORe50-NI. One of the reasons is that class imbalance, the key cause of forgetting in the OCI

setting, does not exist in ODI since the class labels are the same for all tasks. Moreover, in the ODI

setting, samples in the data stream change gradually and smoothly with different nonstationary strengths

(NS-MiniIMageNet) or nonstationary types (CORe50-NI). Learning new samples sequentially with the

replay samples(replay-based) may be more effective for the model to adapt to the gradually changing

nonstationarity than learning only the samples in the buffer (GDumb). Additionally, the greedy memory

update strategy (see Algorithm 5 in Appendix) in GDumb is not suitable for the ODI setting as the

buffer will comprise mostly of samples in the latest tasks due to the greedy update, and GDumb will have

very limited access to samples in the earlier tasks. Using reservoir sampling as the update strategy may

alleviate this shortcoming since reservoir sampling ensures every data point has the same probability to

be stored in the memory.

CN-DPM has terrible performance in this setting because it is very sensitive to hyperparameters,

and the method cannot find the hyperparameter set that works in this setting within the same tuning

budget as other methods.

Regarding methods without a memory buffer, the KD-based LwF underperforms EWC and Finetune,

implying KD may not be useful in the ODI setting.
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Figure 2.5: Average Accuracy, Forgetting, Running Time, Forward Transfer and Backward Transfer for
the ODI setting with a 5k memory buffer. Each column represents a metric and each row represents a
dataset. Forward and backward transfer are not applicable in CORe50 since it uses one test set for all
tasks.
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Another interesting observation is that all methods, including Offline, show unsatisfactory results in

the blur scenario. The pivotal cause may be due to the backbone model we use (ResNet18 [53]) since a

recent study points out that Gaussian blur can easily degrade the performance of ResNet [137].

In terms of other metrics, as shown in Fig. 2.5, we find that all methods show positive forward

transfer, and replay-based methods show much better backward transfer than others. The first reason

is that tasks in the ODI setting share more cross-task resemblances than the OCI setting; secondly, the

bias towards the current task due to class imbalance does not happen since new tasks contain the same

class labels as old tasks. Thus, the model is able to perform zero-shot learning (forward transfer) and

improve the preceding tasks (backward transfer).

In summary, replay-based methods exhibit more robust and surpassing performance in the ODI

setting. Considering the running time and the performance in the larger scale dataset, MIR stands out

as a versatile and competitive method in this setting.

2.8.5 Overall Comments for Methods and Tricks

We summarize the key findings and give comments on each method and trick based on our findings in

Table 2.12 and Table 2.13.

2.9 Emerging Directions in Online Continual Learning

In this section, we discuss some emerging directions in online CL that have attracted interest and are

expected to gain more attention in the future.

Raw-Data-Free Methods In some applications, storing raw images is not feasible due to privacy

and security concerns, and this calls for CL methods that maintain reasonable performance without

storing raw data. Regularization [91, 77] is one of the directions but [88] shows that this approach

has theoretical limitations in the class incremental setting and cannot be used alone to reach decent

performance. We also have empirically confirmed their claims in this work. Generative replay [156, 144]

is another direction but it is not viable for more complex datasets as the current deep generative models

still cannot generate satisfactory images for such datasets [6, 86].

Feature replay is a promising direction where latent features of the old samples at a given layer

(feature extraction layer) are relayed instead of raw data [61, 48, 98, 123]. Since the model changes

along the training process, to keep the latent features valid, [123] proposes to slow-down—in the limit

case, freeze—the learning of all the layers before the feature extraction layer, while [61] proposes a feature

adaptation method to map previous features to their correct values as the model is updated. Another

way is to generate latent features with a deep generative model [98].

There are other lately proposed approaches which do not require storing the raw data. For example,

SDC [164] leverages embedding networks [24] and the nearest class mean classifier [110]. The approach

proposes a method to estimate the drift of features during learning the current task and compensate

for the drift in the absence of previous samples. DMC [168] trains a separate model for new tasks and

combines the new and old models using publicly available unlabeled data via a double distillation training

objective. DSLDA [49] freezes the feature extractor and uses deep Streaming Linear Discriminant

Analysis [120] to train the output layer incrementally.
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With the increasing data privacy and security concerns, the raw-data-free methods are expected to

attract more research endeavour in the coming years.

Meta Learning Meta-learning is an emerging learning paradigm where a neural network evolves from

multiple related learning episodes and generalizes the learned knowledge to unseen tasks [56]. Since meta-

learning builds up a potential framework to advance CL, a lot of meta-learning based CL methods have

been proposed recently, and most of them support the online setting. MER [131] combines experience

replay with optimization based meta-learning to maximize transfer and minimize interference based

on future gradients. OML [63] is a meta-objective that uses interference as a training signal to learn

a representation that accelerates future learning and avoid catastrophic interference. More recently,

iTAML [127] proposes to learn a task-agnostic model that automatically predicts the task and quickly

adapts to the predicted task with meta-update. La-MAML [46] proposes an efficient gradient-based

meta-learning that incorporates per-parameter learning rates for online CL. MERLIN [67] proposes an

online CL method based on consolidation in a meta-space, namely, the latent space that generates model

weights for solving downstream tasks. In [15], authors propose Continual-MAML, an online extension

of MAML [40], that can cope the new CL scenario they propose. We believe meta-learning based online

CL methods will continue to be popular with recent advances in meta-learning.

CL in Other Areas Although image classification and reinforcement learning are the main focuses

for most CL works, CL has drawn more and more attention in other areas. Object detection has been

another emerging topic in CL, and multiple works have been proposed lately to tackle this problem.

Most methods leverage KD [55] to alleviate CF, and the main differences between the methods are the

base object detector and distillation parts in the network [145, 89, 21, 99]. More recently, a meta-learning

based approach is proposed to reshape model gradients for better information share across incremental

tasks [68]. A replay-based method is introduced to address streaming object detection by replaying

compressed representation in a fixed memory buffer [3].

Beyond computer vision, CL with sequential data and recurrent neural network (RNN) has gained

attention over the past few years. Recent works have confirmed that RNNs, including LSTMs, are also

immensely affected by CF [147, 140, 9]. In [147], the authors unify GEM [103] and Net2Net [22] to tackle

forgetting in RNN. More recently, [36] shows that weight-importance based CL in RNNs are limited

and that the hypernetwork-based approaches are more effective in alleviating forgetting. Meanwhile,

[35] proposes a learning rule to preserve network dynamics within subspaces for previous tasks and

encourage interfering dynamics to explore orthogonal subspaces when learning new tasks. Moreover,

multiple works are proposed to address general CL language learning [148, 90] and specific language

tasks, such as dialogue systems [112, 108, 94], image captioning [27], sentiment classification [72] and

sentence representation learning [96].

Recommender systems have also started to adopt CL [113, 165, 114, 160]. ADER [114] is proposed

to handle CF in session-based recommendation using the adaptive distillation loss and replay with

heading [155] technique. GraphSAIL [160] is introduced for Graph Neural Networks based recommender

systems to preserve a user’s long-term preference during incremental model updates using local structure

distillation, global structure distillation and self-embedding distillation.

Several works also address the deployment of CL in practice. [93] introduces on-the-job learning,

which requires a deployed model to discover new tasks, collect training data continuously and incre-
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mentally learn new tasks without interrupting the application. The author also uses chat-bots and

self-driving cars as the examples to highlight the necessity of on-the-job learning. [31] presents a refer-

ence architecture for self-maintaining intelligent systems that can adapt to shifting data distributions,

cope with outliers, retrain when necessary, and learn new tasks incrementally. [82] discusses the clinical

application of CL from three perspectives: diagnosis, prediction and treatment decisions. [80] addresses

a practical scenario where a high-capacity server interacts with a large group of resource-limited edge

devices and proposes a Dual User-Adaptation framework which disentangles user-adaptation into model

personalization on the server and local data regularization on the user device.

2.10 Conclusion

To better understand the relative advantages of recently proposed CL approaches and the settings where

they work best, this chapter performed extensive experiments with nine methods and seven tricks in the

online class incremental (OCI) and online domain incremental (ODI) settings.

Regarding the performance in the OCI setting (see Table 2.8, Fig. 2.2 and 2.3), we conclude:

• For memory-free methods, LwF is effective in CIFAR100 and Mini-ImageNet, showing similar

performance as replay-based methods with a small memory buffer. However, all memory-free

methods fail in the larger CORe50-NC.

• When the memory buffer is small, iCaRL shows the best performance (by large margins) in CI-

FAR100 and Mini-ImageNet, followed by CN-DPM.

• With a larger memory buffer, GDumb—a simple baseline—outperforms methods designed specifi-

cally for the CL problem in CIFAR100 and Mini-ImageNet at the expense of much longer training

times.

• In the larger and more realistic CORe50-NC dataset, MIR consistently surpasses all the other

methods across different memory sizes.

• We experimentally and theoretically confirm that a key cause of CF is the bias towards new

classes in the last fully connected layer due to the imbalance between previous data and new

data [157, 169, 4].

• None of the methods show any positive forward and backward transfer due to the bias mentioned

above.

The conclusions from our experiments for the OCI tricks (see Table 2.9, Fig. 2.4) are as follows:

• When the memory size is small, LB and NCM are the most effective, showing around 64% relative

improvement.

• With a larger memory buffer, NCM remains effective, and RV becomes more helpful, showing

around 80% relative improvement.

• When equipped with NCM or RV, both ER and MIR can outperform the best performance of the

compared methods without tricks.
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• The running times of NCM and RV increase with the growth in memory size, but other tricks only

add a fixed overhead to the running time.

For the ODI setting (see Table 2.11, Fig. 2.5), we conclude:

• Generally speaking, all replay-based methods (ER, MIR, GSS) show comparable performance

across three memory sizes and outperform all other methods.

• GDumb, the strong baseline that dominates the OCI setting in most cases, is no longer effective,

possibly due to its memory update strategy.

• Other OCI methods that we compared cannot generalize to the ODI setting.

We provide detailed comments for compared methods and tricks in Table 2.12 and Table 2.13.

In summary, we can conclude that for the OCI setting, iCaRL, which combines replay, knowledge

distillation and nearest class mean classifier, should be used when the memory buffer is very small.

When a larger memory buffer is available, MIR with the review trick or the nearest class mean classifier

is the best option. In terms of the ODI setting, MIR is the strong and versatile method across different

datasets and buffer sizes. With best methods and latest tricks, online CL (with a very small mini-batch)

is now approaching the performance levels that are much closer to its ultimate goal of matching offline

training.

To simplify the experiment setting, most of the CL literature, including the work in this chapter,

do not apply common image classification techniques such as transfer learning (e.g., using a pre-trained

model), data augmentation and deeper network architectures to boost the performance. However, since

these techniques have been the crucial components for deep-learning-based image applications, we have

to consider them when evaluating if the current CL methods are ready to face real-world applications.

In the next chapter, we will discuss the practicality of CL methods and introduce a simple but effective

approach that won the first CL competition for computer vision at the Conference on Computer Vision

and Pattern Recognition, CVPR2020.
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Method Comments

Regularization-based

EWC++
• Ineffective in both OCI and ODI settings

• Suffers from gradient explosion

LwF

• Effective on small scale datasets in OCI (achieves similar performance as
replay-based methods with small memory)

• Ineffective in ODI setting

Memory-based

ER

• Efficient training time over other memory-based methods

• Better than GSS in most cases but worse than MIR, especially with a
large memory buffer

MIR
• A versatile and competitive method in both OCI and ODI settings

• Works better on a large scale dataset and a large memory buffer

GSS
• Inefficient training time

• Worse than other memory-based methods in most cases

iCaRL
• Best performance (with large margins) with a small memory buffer on

small scale datasets

A-GEM • Ineffective in both OCI and ODI settings

GDumb

• Best performance with a large memory buffer on small scale datasets in
OCI setting

• Ineffective in ODI mostly due to its memory update strategy

• Inefficient training time due to training from scratch at every inference
point

Parameter-isolation-based

CN-DPM

• Effective when memory size is small

• Sensitive to hyperparameters and when testing on a new dataset, it may
not find a working hyperparameter set given the same tuning budget as
others

• Longest training time among compared methods

Table 2.12: Overall comments for compared methods
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Trick Comments

LB
• Effective when memory buffer is small

• Fixed and limited training time overhead

KDC
• Fails because of over-regularization of knowledge distillation

loss

KDC*
• Provides moderate improvement with fixed and acceptable

training time overhead

MI
• Better improvement with a larger memory buffer

• Training time increases with more iterations

SS
• Similar improvement as KDC* but with less training time

overhead

NCM

• Provides very strong improvement across different memory
sizes.

• Baselines equipped with it outperform state-of-the-art meth-
ods when the memory buffer is large

• Inference time increases with the growth of the memory size

RV

• Presents very competitive improvement, especially with a
larger memory buffer

• Baselines equipped with it outperform state-of-the-art meth-
ods

• Training time increases with the growth of the memory size
but it is more efficient than NCM

Table 2.13: Overall comments for compared tricks



Chapter 3

Continual Learning for Real-World

Applications

Given the insights from the survey we presented in the previous chapter, we provide a simple but effec-

tive approach that combines memory replay, CL tricks summarized in the survey and common image

classification techniques, including transfer learning, data augmentation and deeper network architec-

tures to prepare CL for real-world applications. The proposed method shows remarkable performance

in different metrics, including accuracy, RAM usage and run time, etc., in various realistic settings and

demonstrates the practicality of CL algorithms.

3.1 Introduction

The primary evaluation of CL in the last few years has been centred around accuracy-related metrics.

However, this may lead to a biased conclusion without accounting for the scalability of these techniques

over an increasing number of tasks and more complex settings [30]. When considering more metrics,

including accuracy, total run time, RAM usage, which method works the best remains a open question.

Another important question is whether CL methods that have mostly been proved on artificial bench-

marks such as MNIST [81] or CIFAR [79] can generalize to more realistic CL datasets and settings (e,g.

much longer data sequence).

The 1st Continual Learning in Computer Vision Challenge, organized within the CLVision workshop

at CVPR 2020, is one of the first attempts to address these questions. In particular, the main objectives

of the competition were (1) invite the research community to scale up continual learning approaches to

natural images and possibly on video benchmarks; (2) invite the community to work on solutions that

can generalize over multiple continual learning protocols and settings (e.g. with or without a “task”

supervised signal) (3) provide the first opportunity for a comprehensive evaluation on a shared hardware

platform for a fair comparison.

Our approach to this challenge is based on a replay-based method called Experience Replay(ER)

that we discussed in Section 2.5, which has been shown effective and efficient in various CL settings in

Section 2.8. For every incoming mini-batch, the traditional ER concatenates the incoming mini-batch

with another mini-batch of samples retrieved from the memory buffer. Then, it simply takes an SGD

step with the combined mini-batch, followed by an update of the memory. Since we need to perform

34
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Figure 3.1: Example images of the 50 objects in CORe50, the main video dataset used in the challenge.
Each column denotes one of the 10 categories [101]

the retrieval and update steps for every minibatch, these approaches will not be efficient when we have

thousands of mini-batches. Since data arrive one batch(much larger than a mini-batch) at a time in the

challenge, we concatenate the memory examples at the batch level instead of at the minibatch level and

then perform the model update with the concatenated batch. Additionally, we add a review step before

the final testing to remind the model of the knowledge it has learned. Also, we find that it is vital to

use standard image classification techniques such as transfer learning (e.g., using a pre-trained model),

data augmentation and deeper network architectures to obtain good accuracy performance.

The final solution based on the approach introduced above ranked first in all three competition tracks

and won the competition.

3.2 CLVision Continual Learning Competition

The challenge is based on the CORe50 dataset [101] with three different scenarios and five metrics. This

section summarizes the framework of the challenge. For more details, we refer the reader to the challenge

website [1].

3.2.1 Dataset

CORe50 [101] was specifically designed as an object recognition video benchmark for continual learning.

It consists of 164,866 128×128 images of 50 domestic objects belonging to 10 categories (see Figure 3.1);

for each object the dataset includes 11 video sessions (∼300 frames recorded with a Kinect 2 at 20 fps)

characterized by relevant variations in terms of lighting, background, pose and occlusions. Classification

on CORe50 can be performed at Object level (50 classes) or at Catagory level (10 classes). The former,

being a more challenging task, was the configuration chosen for this competition. The egocentric vision

of hand-held objects allows for the emulation of a scenario where a robot has to incrementally learn to

recognize objects while manipulating them. Objects are presented to the robot by a human operator

who can also provide the labels, thus enabling a supervised classification.
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3.2.2 Scenarios

Based on the CORe50 dataset, the challenge included three different scenarios based on the different

settings considered:

1. New Instances (NI): In this setting, 8 training batches of the same 50 classes are encountered over

time. Each training batch is composed of different images collected in different environmental

conditions. The differences of background and lighting between two batches vary. Some batches

are very contrasting, while some batches are quite similar. We also remark that in the NI scenario,

no task label is given during both training and testing time.

2. Multi-Task New Classes (MT-NC)1: In this setting, the 50 different classes are split into 9 different

tasks: 10 classes in the first batch and 5 classes in the other 8. In this case, the task label will be

provided during training and test.

3. New Instances and Classes (NIC): this protocol is composed of 391 training batches containing 300

images of a single class. No task label will be provided, and each batch may contain images of a

class seen before as well as a completely new class.

4. All together (ALL): All the settings presented above.

3.2.3 Evaluation Metrics

In the last few years, the main evaluation focus in continual learning has always been centred around

accuracy-related forgetting metrics. However, as argued by [30], this may lead to a biased conclusion

without accounting for the real scalability of such techniques over an increasing number of tasks/batches

and more complex settings. For this reason, in the competition, each solution was evaluated across a

number of metrics:

1. Final accuracy on the test set2: computed only at the end of the training procedure.

2. Average accuracy overtime on the validation set : computed at every batch/task.

3. Total training/test time: total running time from start to end of the main function (in minutes).

4. RAM usage: total memory occupation of the process and its eventual sub-processes. It is computed

at every epoch (in MB).

5. Disk usage: only of additional data produced during training (like replay patterns) and additionally

stored parameters. It is computed at every epoch (in MB).

The final aggregation metric (CLscore) is the weighted average of the 1-5 metrics (0.3, 0.1, 0.15,

0.125, 0.125 respectively).

1Multi-Task-NC constitutes a simplified variation of the originally proposed New Classes (NC) protocol [101] (where
the task label is not provided during train and test).

2Accuracy in CORe50 is computed on a fixed test set. The rationale behind this choice is explained in [101]
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3.3 Batch-level Experience Replay with Review

3.3.1 General Approach

As we mentioned in Section 3.2.2, the data distributions of two batches are different and therefore,

naively updating the neural network with a new batch will result in catastrophic forgetting. To mitigate

this problem, a common approach in CL is the memory-based method described in Section 2.5, which

uses a memory buffer to store a subset of the data from past batches to tackle forgetting. The data from

the memory buffer can be used to either constrain the optimization of parameters such that the loss

on past batches can never increase [103, 19] or conduct experience replay [20, 6]. In this competition,

we choose the experience replay approach as it is more efficient and computationally cheaper than the

constraint optimization approach.

Compared with the simplest baseline model that fine-tunes the parameters based on the new task

without any techniques to prevent forgetting, conventional experience replay approaches store a subset of

the samples from the past batches in a memory bufferM of limited size mem sz. During the training of

the current batch, it concatenates the incoming mini-batch with another mini-batch of samples retrieved

from the memory buffer. Then, it simply takes an SGD step with the combined mini-batch, followed by

an update of the memory [20, 6].

Since we need to perform the retrieval and update steps for every minibatch, these approaches will

not be efficient when we have thousands of mini-batches. Since data arrive one batch(much larger than

a mini-batch) at a time in the challenge, we concatenate the memory examples at the batch level instead

of at the minibatch level and then perform the model update with the concatenated batch. Additionally,

we add a review step before the final testing to remind the model of the knowledge it has learned.

The overall training procedure is presented in Algorithm 6. For every batch of data except the first

batch, we do a batch level experience replay. Concretely, for every epoch, we draw another batch of data

DM randomly from the episodic memory with size replay sz, concatenate it with the current batch and

conduct the gradient descent parameters update. We note that DM is different for every epoch. When

we finish the last epoch of the current batch, we will randomly select mem sz
n examples from the current

batch where n is the total number of batches in the whole scenario. After training all the data batches,

we will do a final review step where we draw a batch of size DR from memory and conduct the gradient

update again. To prevent overfitting, this step’s learning rate needs to be lower than the learning rate

used for processing new batches.

3.3.2 Architecture and Training Details

For all three scenarios, we use the DenseNet-161 model [60] pre-trained on ImageNet [28]. DenseNet-161

is the largest model in the DenseNet group with a size around 100MB. As shown in Figure 3.2, the

DenseNet-161 model consists of 4 dense blocks and we freeze all the layers before the third blocks. This

ensures the pre-trained model can extract the basic features from the image and shorten the training

time as well. The network is trained via cross-entropy loss and stochastic gradient descent with the

mini-batch size equal to 32. The detailed hyper-parameters of the optimizer for each scenario are listed

in the Appendix in [104].

As we mentioned in 3.2.2, the critical difference between batches are background and lighting, and

most of the target objects are in the center of the images. Therefore, we center-crop the image with a
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Algorithm 6: Batch-level Experience Replay with Review
Input : mem sz memory buffer size, replay sz replay mini-batch size, review sz review data size
Input : lr replay replay learning rate, lr review review learning rate
Require: D data stream, θ model parameters

1 M← {} ∗mem sz . Allocate memory of size mem sz

2 for t ∈ {1, . . . , T} do
3 for epochs do
4 if t > 1 then

5 DM
replay sz∼ M . Sample a batch of data with size replay sz from M

6 Dtrain = DM ∪Dt . Concatenate the current data batch and the memory batch

7 else
8 Dtrain = Dt

9 θ ← SGD(Dtrain, θ, lr replay) . One pass minibatch gradient descent over Dtrain

10 M← UpdateMemory(Dt,M,mem sz) . Update memory

11 DR
review sz∼ M . Sample a batch of data with size review size from M

12 θ ← SGD(DR, θ, lr review, batch sz) . One pass minibatch gradient descent over DR return θ

Figure 3.2: DenseNet-161 Architecture [146]

(100, 100) window to mitigate the background’s effect to some extent and make the target object occupy

more pixels in the image. As the size of the input image is (128, 128, 3) and we do not train any layers

before the third dense block, we resize the cropped image to (224, 224, 3) to ensure no size discrepancy

between the input of the pre-trained model and the training image. Noted that this preprocessing step is

applied to both training and testing images. Figure 3.3 shows an example of the center-cropped image.

Figure 3.3: Example of pre-processing (e.g., center-crop)

Moreover, to get better generalization, we leverage data augmentation techniques, including pixel-

level and spatial-level transformations. Specifically, we use five spatial-level transformations, including

HorizontalFlip, RandomRotate90, ElasticTransform, GridDistortion, and OpticalDistortion. For pixel-

level transformations, we use RandomContrast, RandomGamma, and RandomBrightness. The details

of the data preprocessing steps used in the final submission are shown in Table 3.1.
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Step Augmentation Probability

Step 1 CenterCrop(100, 100) p = 1.0

Step 2 One of

{
HorizontalFlip(p = 1)

RandomRotate90(p = 1)
p = 0.5

Step 3 One of


RandomContrast(0.4)

RandomGamma(20, 180)

RandomBrightness(0.4)

p = 0.5

Step 4 One of


ElasticTransform(α = 120, σ = 6, αaffine = 3.6)

GridDistortion()

OpticalDistortion(distort limit = 2, shift limit = 0.5)

p = 0.3

Step 5 Resize(224, 224) p = 1.0

Step 6 Normalize

(
mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225]

)
p = 1.0

Table 3.1: The details of the data preprocessing steps.

3.3.3 Final Solutions

In both NI and NIC scenarios, we use the same approach introduced above, but because the number

of batches is different in these two scenarios, we use different mem sz and replay sz. The detailed

hyperparameters of the models for each scenario are listed in Appendix in [104].

Since the task label is provided in the MT-NC scenario, the task difficulty is much smaller than

the other two scenarios. As [131] proposed recently, we can treat the CL problem as solving Transfer-

Interference Trade-off, where we want to maximize transfer and minimize interference. In this scenario,

we found that interference outweighs transfer when we share the same model across all the batches.

Thus we decided to assign a fresh pre-trained model for each batch to prevent interference. Moreover,

since we do not need any extra steps to avoid forgetting, we will have a shorter training time as well.

Nevertheless, the drawback of this method is that it prevents positive transfer due to a lack of weight

sharing.

3.4 Experiments

3.4.1 Multi-Task New Classes (MT-NC)

The Baseline method in MT-NC shares all the layers before the last fully-connected layer between

all the batches and each batch has its own fully connected layer. Ind model represents the indepen-

dent model approach mentioned in 3.3.3 that a fresh pre-trained model is assigned to each batch of

data. Ind model preproc is the Ind mdoel plus the preprocessing steps mentioned in Section 3.3.2.

DenseNet161 tune all means tuning the model without freezing any of the layers and DenseNet161 freeze

freezes all the layers before the third block as mentioned in Section 3.3.2.

As we can see in Table 3.2, the baseline method experiences huge forgetting. By assigning an

independent model to each batch and freezing the first half of the model, the performance improves

significantly and the processing step helps the model generalize better.
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Method Architecture avg val acc final val acc

Baseline DenseNet161 tune all 14.0% 12.8%
Ind model DenseNet161 freeze 54.7% 98.6%

Ind model preproc DenseNet161 freeze 55.1% 99.3%

Table 3.2: Multi-Task-NC Performance Comparison

3.4.2 New Instances (NI)

In the NI scenario, all batches share the same model and the baseline is fine-tuning the model based on

new incoming batches without any steps to prevent forgetting. As we can see in Table 3.3, the Batch-

level Experience Replay (BER) improves the final validation accuracy by around 7.7%. The final review

step increases the final validation accuracy by 1.1% but it does not help the average validation accuracy

since the final review is done by the end of the training. The data preprocessing and augmentation yield

much better generalization and consequently enhance both metrics.

Method Architecture avg val acc final val acc

Baseline DenseNet161 tune all 71.1% 81.1%
BER DenseNet161 tune all 77.1% 88.7%

BER review DenseNet161 tune all 77.0% 89.8%
BER review preproc DenseNet161 freeze 90.1% 96.7%

Table 3.3: NI Performance Comparison

3.4.3 New Instances and Classes (NIC)

The baseline of NIC is the same as NI. However, since in NIC, every batch contains only one class, the

data distribution difference between two batches is much greater than the NI scenario, which explains

the extremely poor result of the baseline. We use the same algorithm, Batch-level Experience Replay

with Review, to tackle this scenario as well. As we can see in Table 3.4, the BER review preproc method

gets the highest values in both metrics, similar to the result of NI,. The average validation accuracy of

NIC is much lower than NI. This is because we capture validation accuracy by the end of each batch and

at the beginning of the training, the validation accuracy is very low as the model has not seen enough

data yet.

Method Architecture avg val acc final val acc

Baseline DenseNet161 tune all 0.02% 0.02%
BER review DenseNet161 tune all 55.3% 90.1%

BER review preproc DenseNet161 freeze 59.4% 96.0%

Table 3.4: NIC Performance Comparison

3.4.4 Official Competition Result

We participated in the competition tracks for all three scenarios. Our team UT LG won all three tracks

as well as the ALL track that averages the results across the three tracks. The results of this competition

are reported in Table 3.5. For detailed competition results, we refer the readers to [102].
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team name
test acc

(%)
val accavg

(%)
Time
(m)

ramavg
(mb)

rammax
(mb)

diskavg
(mb)

diskmax
(mb)

CLscore

UT LG 0.92 0.68 68.67 10643.25 11624.87 0 0 0.694
Jodelet 0.88 0.64 6.59 15758.62 18169.32 0 0 0.680
Ar1 0.80 0.58 20.46 8040.47 10092.72 0 0 0.663
Yc14600 0.91 0.65 64.88 16425.64 19800.48 0 0 0.653
ICT VIPL 0.95 0.68 76.73 2459.31 2459.68 392.187 562.5 0.617
Soony 0.88 0.63 120.33 14533.97 15763.60 0 0 0.612
Rehearsal 0.75 0.52 22.87 19056.77 23174.11 0 0 0.570
JimiB 0.91 0.74 242.12 17995.61 23765.51 0 0 0.542
Noobmaster 0.76 0.53 147.59 24714.06 30266.62 0 0 0.464
Näıve 0.23 0.24 5.16 15763.46 18158.02 0 0 0.327

avg 0.80 0.59 77.54 14539.12 17327.49 39.22 56.25 0.58

Table 3.5: ALL track results for the top-10 finalists of the competition. Our team (UT LG) obtained
the best CLScore.

3.5 Conclusion

In this chapter, we provide a simple but effective approach that combines memory replay and commonly

used techniques in image classification including, transfer learning, data augmentation and deeper net-

work architectures. With an average testing accuracy of ∼92%, and a running time of ∼68 minutes,

our team’s relatively simple approach suggests CL for practical image classification applications to be

feasible in the real-world setting, even with a large number of small non-i.i.d. bathes.

However, the memory sample retrieval strategy used in our winning solution is still simple random

sampling, and it may not be optimal in some scenarios. In the next chapter, we will discuss an open but

crucial question for replay-based methods, how to update and retrieve memory samples when new data

arrives?
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Adversarial Shapley value

Experience Replay

In the last two chapters, we have demonstrated the effectiveness of the replay-based methods in the

OCI setting. However, the best method for selecting which buffered images to replay is still an open

question. In this chapter, we contribute a novel Adversarial Shapley value scoring method that scores

memory data samples according to their ability to preserve latent decision boundaries for previously

observed classes (to maintain learning stability and avoid forgetting) while interfering with latent decision

boundaries of current classes being learned (to encourage plasticity and optimal learning of new class

boundaries). Through extensive experiments on three commonly used benchmarks in the CL literature,

we demonstrate that ASER provides competitive or improved performance compared to state-of-the-art

replay-based methods, especially when the memory buffer size is small.

This work is a collaboration with Jihwan Jeong, Dongsub Shim and Scott Sanner from the University

of Toronto, Hyunwoo Kim and Jongseong Jang from the LG AI Research. It has been published at

the AAAI Conference on Artificial Intelligence (AAAI 2021) as ”Online Class-Incremental Continual

Learning with Adversarial Shapley Value” [105].

4.1 Introduction

In this chapter, we focus on the online class incremental (OCI) setting that we defined and discussed

in Section 2.3, where a model needs to learn new classes continually from an online data stream (each

sample is seen only once).

As we mentioned in Section 2.5, most CL methods can be taxonomized into three major categories:

regularization-based, parameter isolation, and memory-based methods [121, 26]. Regularization-based

methods incorporate an additional penalty term into the loss function to penalize the update of critical

model parameters [77, 166, 5, 133]. Other regularization-based methods imposed knowledge distillation

techniques to penalize the feature drift on previous tasks [91, 157, 128]. Parameter isolation methods

assign per-task parameters to bypass interference by expanding the network and masking parameters to

prevent forgetting [106, 85, 163]. Memory-based methods deploy a memory buffer to store a subset of

data from previous tasks. The samples from the buffer can be either used to constrain the parameter

updates such that the loss on previous tasks cannot increase [19, 103], or simply for replay to prevent

42
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forgetting [130, 20].

Random Replay MIR ASER

Figure 4.1: 2D t-SNE [152] visualization of CIFAR-100 data embeddings and their class labels (different
colors) showing current task samples (triangle), memory samples (pale circle) and retrieved memory sam-
ples for rehearsal (bold x). For each point, we obtain the latent embedding from reduced ResNet18 [19].
Note that Random Replay [20] distributes its retrieved samples non-strategically, MIR disproportion-
ately selects seemingly redundant samples in a single – apparently most interfered – class (red), whereas
ASER strategically retrieves memory samples that are representative of different classes in memory but
also adversarially located near class boundaries and current task samples.

As we can see in Section 2.8, regularization methods only protect the model’s ability to classify

within a task and thus they do not work well in the OCI setting where the ability to discriminate among

classes from different tasks is crucial [88]. Also, most parameter isolation methods require task identity

during inference, which violates our setting. Therefore in this work, we consider the replay approach

which has shown to be successful and efficient for the OCI setting [8, 6]. Since the memory buffer is the

only place to store data from previous tasks, a key question for replay-based methods is how to update

and retrieve memory samples when new data arrives? For example, [20] proposed a simple but strong

baseline that randomly updates and retrieves samples, while the highly effective Maximally Interfered

Retrieval (MIR) method [6] chooses replay samples whose loss most increases after a current task update.

However, if we visualize the latent space of retrieved memory samples chosen by each method in Fig. 4.1,

we see that the methods mentioned above fail to strategically select samples that both preserve existing

memory-based class boundaries while protecting against current task samples that interfere with these

boundaries (detailed discussion in caption of Fig. 4.1). Moreover, as we can see in Section 2.8.2 when

memory buffer is small, replay-based methods, such as ER and MIR, only show similar performance as

the memory-free LwF [91]. This implies more careful analysis of the memory retrieval and update steps

is necessary for the small memory setting.

We address the deficiencies observed above by proposing a novel replay-based method called Adver-

sarial Shapley value Experience Replay (ASER). ASER is inspired by the Shapley value (SV) [143] used

in cooperative game theory to fairly distribute total gains to all players — in our CL setting, we use

the SV to determine the contribution of memory samples to learning performance [42, 64, 65]. We also

introduce an adversarial perspective of SV for CL memory retrieval that aims to score memory samples

according to their preservation of decision boundaries for “friendly” samples in the memory buffer (to

maintain learning stability and avoid forgetting) and their interference with “opponent” samples from

the current task that disrupt existing memory-based class boundaries (to encourage plasticity and opti-

mal learning). Through extensive experiments on three commonly used benchmarks in the CL literature,

we demonstrate that ASER provides competitive or improved performance compared to state-of-the-art
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replay-based methods, especially when the memory buffer size is small.

4.2 Online Class Incremental Learning

4.2.1 Problem Definition

In this work, we focus on the online class incremental (OCI) setting that we defined and discussed in

Section 2.3. In the OCI setting, a neural network classifier f : Rd 7→ RC parameterized by θ needs to

learn new classes continually from an online data stream (each sample is seen only once). It will receive

input batches Btn of size b from taskt, which consists of classes that the classifier has never seen before

in task1:t. Moreover, we adopt the single-head evaluation setup [18] where the classifier has no access to

task identity during inference and hence must choose among all labels. Our goal is to train the classifier

f to continually learn new classes from the data stream without forgetting. For a more formal definition

of the OCI setting, please refer to Section 2.3.

4.2.2 Experience Replay Methods

As we can see in Section 2.8.2, the replay-based methods have shown to be effective and efficient in the

OCI settings. Hence, we focus on the replay-based approach in this work.

As we mentioned in Section 2.5, most of the replay-based methods follow the generic algorithm we

summarized (see Algorithm 2). What differentiates various replay-based methods are the memory re-

trieval strategy (line 3) [6, 105], and the memory update strategy (line 5) [25, 75, 8]. For example,

Experience Replay (ER) applies reservoir sampling [154] in MemoryUpdate and random sampling in

MemoryRetrieval . Despite its simplicity, recent research has shown that naive ER outperforms many

specifically designed CL approaches with and without a memory buffer [20]. Maximally-interfered Re-

trieval (MIR) [6] aims to improve the MemoryRetrieval strategy by choosing replay samples according to

loss increases given the estimated parameters update based on the newly arrived data. However, samples

with significant loss increases tend to be similar in the latent space, which may lead to redundancy in

the retrieved data, as shown in Fig. 4.1. Like ER, MIR uses reservoir sampling for the MemoryUpdate.

Different from MIR, Gradient-based Sample Selection (GSS) [8] pays attention to the MemoryUpdate

strategy [8]. Specifically, it tries to diversify the gradients of the samples in the memory buffer. Like

ER, GSS uses random sampling in MemoryRetrieval .

4.3 Efficient Computation of Shapley Value via KNN Classifier

When we return to Fig. 4.1 and analyze the latent embeddings of memory samples, we observe the

natural clustering effect of classes in the embedding space, which has been well-observed previously in

the deep learning literature [115, 32]. On account of this, we observe that some samples may indeed be

more important than others in terms of preserving what the neural network has learned. For example,

data from one class that are near the boundary with data from another class in some sense act as

sentinels to guard the decision boundary between classes. This suggests the following question: how can

we value data in the embedded space in terms of their contribution to accurate classification?

Given that the embedding plot of Fig. 4.1 suggests that a new data point is likely to take the

classification of its nearest neighbors in the embedding space, we could rephrase this question as asking
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how much each data point in memory contributes to correct classification from the perspective of a K-

Nearest Neighbors (KNN) classifier. Fortunately, the existing research literature already provides both

a precise and efficient answer to this question viewed through the lens of Shapley data valuation for

KNN classifiers [64, 42, 65]. Before we cover this solution, we first pause to recap the purpose of Shapley

values.

4.3.1 Shapley Value (SV) for Machine Learning

The SV [143, 135] was originally proposed in cooperative game theory to decide the share of total gains

for each player in a coalition. The SV has a set of mathematical properties that make it appealing to

many applications: group rationality, fairness, and additivity. Conversely, it can be shown that the SV

is the only allocation scheme that satisfies these three properties.

In the context of machine learning, the SV has been used to estimate the individual contribution of

data points to the performance of a trained model in the context of all other data [42, 65]. Formally, let

N denote the number of data points and I = {1, . . . , N} be the associated index set. Then, each datum

is interpreted as a player of a cooperative game with the goal of maximizing test-time performance. Let

v(S) define a utility function of the ML model over a subset S ⊂ I on which the model is trained. Then,

the SV of a data point of index i with the utility v(S) is the following:

s(i) =
1

N

∑
S⊆I\{i}

1(
N−1
|S|
) [v(S ∪ {i})− v(S)] (4.1)

Intuitively, when we consider every possible subset of data points, s(i) measures the average marginal

improvement of utility given by the sample i. By setting the utility as test accuracy in ML classification

tasks, the SV can discover how much of the test accuracy is attributed to a training instance.

4.3.2 Efficient KNN Shapley Value Computation

Specific to our requirements for data valuation in this paper, recent work has developed an efficient

method for SV computation in a KNN classification framework [64]. This is a critical innovation since

the direct powerset-based computation of the SV requires O(2N ) evaluations for general, bounded utility

functions. Furthermore, each evaluation involves training an ML model with a given subset of data (S).

This is prohibitive in most modern deep learning applications, not to mention online CL with neural

networks. As shown in [64] and summarized below, the exact KNN-SV can be computed in O(N logN).

Let (xev
j , y

ev
j ) denote an evaluation point and Dc = {(xi, yi)}Nc

i=1 a candidate set, where yev
j and

yi are labels. We compute the KNN-SVs of all examples in Dc w.r.t. the evaluation point with the

utility function (4.2). The KNN utility function over a subset S ⊂ Dc measures the likelihood of correct

classifications:

vj,KNN(S) =
1

K

min(K,|S|)∑
k=1

1[yαk(S) = yev
j ] (4.2)

where αk(S) is the index of the kth closest sample (from xev
j ) in S based on some distance metric. Each

sample i is assigned a KNN-SV — sj(i) — that represents the average marginal contribution of the

instance to the utility. Due to the additivity of SV, we obtain the KNN-SV of a candidate sample w.r.t.
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the evaluation set (De = {(xev
j , y

ev
j )}Ne

j=1) by taking the average: savg(i) = 1/Ne

∑Ne

j=1 sj(i).

(4.3) and (4.4) show how to recursively compute the exact KNN-SVs of samples inDc w.r.t. (xev
j , y

ev
j ) ∈

De starting from xαNc
(the farthest point from xev

j ) [64]:

sj(αNc) =
1[yαNc

= yev
j ]

Nc
(4.3)

sj(αm) = sj(αm+1)+

1[yαm
= yev

j ]− 1[yαm+1
= yev

j ]

K

min(K,m)

m
(4.4)

Here, sj(αm) is the KNN-SV of the mth closest candidate sample from xev
j . Note that the dependency

on the utility v is suppressed as vKNN is always used. We refer readers to [64] for detailed derivation of

these results.

4.4 Adversarial Shapley Value Experience Replay (ASER)

We have now affirmatively answered how to value data in the embedded space in terms of its contribution

to accurate classification by leveraging the efficient KNN-SV computation. Equipped with this powerful

global data valuation algorithm, we now present our novel ER method dubbed Adversarial Shapley value

ER (ASER) that leverages the SV for both MemoryRetrieval and MemoryUpdate.

4.4.1 ASER Memory Retrieval

A key insight with our ASER approach for MemoryRetrieval is that we need to balance the competing

needs at the crux of CL, i.e., we need to retrieve memory samples for replay that prevent forgetting

while also finding samples that maximally interfere with the incoming batch Bn to ensure plasticity in

learning. This leads us not only to leverage a cooperative notion of the SV (where higher SV is better)

as it relates to M but also an adversarial notion of the SV as it relates to Bn (where lower – and, in

fact, negative – SVs indicate interference). In addition ASER also adopts a cooperative SV approach to

the MemoryUpdate process.

Formally, we can view a neural network classifier (f) as two separate parts: a feature extractor

(fext : Rd 7→ Rh) and a fully connected neural classifier (fcl : Rh 7→ RC), where h is the dimensionality

of the latent space X l. We implicitly define a KNN classifier and use the Euclidean distance in X l.
Then, by (4.3)-(4.4), we can compute the KNN-SVs of candidate samples w.r.t. evaluation samples.

As previously noted, ER’s performance depends on deciding what to store in memory (i.e., Memo-

ryUpdate) and what to replay from memory (i.e., MemoryRetrieval).

One key desiderata is that we want samples in M as well as Bn to be well-separated by fext in the

latent space. To this end, we target two types of samples in M for retrieval: those near the samples in

Bn but have different labels (Type 1); those that are representative of samples in the memory (Type

2). Training with samples in Type 1 encourages the model to learn to differentiate current classes from

previously seen classes. Samples in Type 2 help retain latent decision boundaries for previously observed

classes.

We ground our intuition as to how samples interfere and cluster with each other in the latent space

based on two properties of the KNN-SV. Given a candidate sample i ∈ Dc and an evaluation set De, the
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KNN-SV of the point i w.r.t. an evaluation point j ∈ De, i.e. sj(i), satisfies the following (see Appendix

of [105] 1 for proof):

• Property 1. sj(i) > 0 if and only if yi = yev
j . Also, sj(i) = 0 only when S = {i′|yi′ = yev

j , ∀i′ ∈
{i+ 1, . . . , Nc}} = ∅.

• Property 2. |sj(m)| is a non-increasing function of m for m such that ym = yev
j . Similarly, |sj(n)|

is a non-increasing function of n for n such that yn 6= yev
j . And for m ≥ K, |sj(m)| − |sj(m′)| > 0

holds for m < m′, where m′ is the smallest index with 1(ym = yev
j ) = 1(ym′ = yev

j ), if there exists

l ∈ (m,m′) such that 1(yl = yev
j ) 6= 1(ym = yev

j ). In other words, as i gets closer to the evaluation

point j, |sj(i)| cannot decrease for points with the same 1(yi = yev
j ), and for i ≥ K, it can only

increase when there exist more than one differently labeled points.

The first property states that a candidate sample i has a positive KNN-SV if it has the same label

as the evaluation point being considered (cooperative); the sample will have a negative KNN-SV if its

label is different than the evaluation point (adversarial). By combining both properties, we note:

If sj(i) is large, the candidate i is close to the evaluation point j in the latent space (X l) and

has the same label (yi = yev
j ). On the other hand, if sj(i) is a negative value of large magnitude,

then i is close to j, yet has a different label (yi 6= yev
j ). Thus, we conjecture that a good data

candidate i has high positive SV for memory M and negative SV with large magnitude for the

current input task Bn.

When we consider the whole evaluation set, we take the mean sDe(i) = 1/|De| ·
∑
j∈De

sj(i), and the

above analysis still holds in average. Therefore, by examining the KNN-SVs of candidate samples, we

can get a sense of how they are distributed with respect to the evaluation set in X l. Then, we define

the adversarial SV (ASV) that encodes the Type 1 & 2 criteria

ASV(i) = max
j∈Ssub

sj(i)− min
k∈Bn

sk(i), (4.5)

as well as a “softer” mean variation ASVµ

ASVµ(i) =
1

|Ssub|
∑
j∈Ssub

sj(i)−
1

b

∑
k∈Bn

sk(i), (4.6)

where i ∈M\Ssub and Ssub is constructed by subsampling some number of examples fromM such that

it is balanced in terms of the number of examples from each class. This prevents us from omitting any

latent decision boundaries of classes in the memory. Note that Ssub is used as the evaluation set in the

first term, whereas the input batch Bn forms the evaluation set in the latter term. The candidate set is

M̄ =M\Ssub, and we retrieve samples of size bM from the set that have the highest ASVs (Algorithm

7). We denote our ER method using the score ASV (4.5) as ASER, while ASERµ uses ASVµ (4.6)

instead. For computational efficiency, we randomly subsample Nc candidates from M̄.

Note that both ASER methods do not greedily retrieve samples with the smallest distances to either

Ssub or Bn. This is because for a single evaluation point j, sj(αm) = sj(αm+1) when yαm
= yαm+1

. So,

a few points can have the same score even if some of them are farther from the evaluation point. This is

1 Please find the appendix in our extended version of [105] on arXiv. Link: https://arxiv.org/abs/2009.00093
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Algorithm 7: ASER MemoryRetrieval

Input : Memory batch size bM
Input batch Bn; Candidate size Nc;
Subsample size Nsub;
Feature extractor fext

1 Ssub
Nsub∼ M // get evaluation set

2 Dc
Nc∼ M\ Ssub // get candidate set

/* get latent embeddings */

3 LBn , LSsub , LDc ← fext(Bn), fext(Ssub), fext(Dc)
4 for i ∈ Dc do
5 for j ∈ Ssub do
6 sj(i)← KNN-SV(LDc , LSsub) as per (4.3), (4.4)

7 for k ∈ Bn do
8 sk(i)← KNN-SV(LDc , LBn) as per (4.3), (4.4)

9 score(i)← ASV(i) as per (4.5) or (4.6)

10 BM ← bM samples with largest score(·)
11 return BM

in contrast to a pure distance-based score where the closest point gets the highest score. In Appendix1

B of [105], we show that our method outperforms pure distance-based methods, proving the effectiveness

of the global way in which the SV scores candidate data based on the KNN perspective.

We summarize our method in Algorithm 7, and compare it with other state-of-the-art ER methods

on multiple challenging CL benchmarks in Section 4.5.

4.4.2 KNN Shapley Value Memory Update

For MemoryUpdate, we find that samples with high KNN-SV promote clustering effect in the latent

space. Therefore, they are useful to store in the memory, which aligns with the original meaning of the

SV. More concretely, we subsample Ssub ∼M and compute 1/|Ssub|
∑
j∈Ssub

sj(i) for i ∈ M̄∪Bn. Then,

we replace samples in M̄ having smaller average KNN-SVs than samples in Bn with the input batch

samples.

We use KNN-SV MemoryUpdate for ASER throughout experiments in Section 4.5, while the ablation

analysis of different variations with random MemoryUpdate or random MemoryRetrieval (both random

retrieval and update reduces to ER) is presented in Appendix1 C of [105]. Note that ASER with KNN-

SV MemoryUpdate performs competitively or better than the variations, underscoring the importance

of SV-based methods for both MemoryUpdate and MemoryRetrieval .

4.5 Experiments

To test the efficacy of ASER and its variant ASERµ, we evaluate their performance by comparing them

with several state-of-the-art CL baselines. We begin by reviewing the benchmark datasets, baselines we

compared against and our experiment setting. We then report and analyze the result to validate our

approach.
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4.5.1 Experiment Settings

Datasets

Split CIFAR-10 splits the CIFAR-10 dataset [79] into 5 different tasks with non-overlapping classes

and 2 classes in each task, similarly as in [6].

Split CIFAR-100 is constructed by splitting the CIFAR-100 dataset [79] into 10 disjoint tasks, and

each task has 10 classes.

Split miniImagenet consists of splitting the miniImageNet dataset [153] into 10 disjoint tasks, where

each task contains 10 classes

The detail of datasets, including the general information of each dataset, class composition and the

number of samples in training, validation and test sets of each task is presented in Appendix1 D of [105].

Baselines

We compare our proposed ASER against several state-of-the-art continual learning algorithms:

• AGEM [19]: Averaged Gradient Episodic Memory, a memory-based method that utilizes the

samples in the memory buffer to constrain the parameter updates.

• ASER & ASERµ: Our proposed methods. ASER scores samples in the memory with ASV in

(4.5). ASERµ uses the mean variation ASVµ in (4.6).

• ER [20]: Experience replay, a recent and successful rehearsal method with random sampling in

MemoryRetrieval and reservoir sampling in MemoryUpdate.

• EWC [77]: Elastic Weight Consolidation, a prior-focused method that limits the update of pa-

rameters that were important to the past tasks, as measured by the Fisher information matrix.

• GSS [8]: Gradient-Based Sample Selection, a MemoryUpdate method that diversifies the gradients

of the samples in the replay memory.

• MIR [6]: Maximally Interfered Retrieval, a MemoryRetrieval method that retrieves memory sam-

ples that suffer from an increase in loss given the estimated parameters update based on the current

task.

• iid-online & iid-offline: iid-online trains the model with a single-pass through the same set of

data, but each mini-batch is sampled iid from the training set. iid-offline trains the model over

multiple epochs on the dataset with iid sampled mini-batch. We use 5 epochs for iid-offline in all

the experiments as in [6, 8].

• fine-tune: As an important baseline in previous work [6, 8, 85], it simply trains the model in the

order the data is presented without any specific method for forgetting avoidance.

Other settings

Single-head Evaluation Most of the previous work in CL applied multi-head evaluation [18] where

a distinct output head is assigned for each task and the model utilizes the task identity to choose the

corresponding output head during test time. But in many realistic scenarios, task identity is not available

during test time, so the model should be able to classify labels from different tasks. As in [6, 8], we adopt
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the single-head evaluation setup where the model has one output head for all tasks and is required to

classify all labels. Note that the setting we use – online and single-head evaluation – is more challenging

than many other reported CL settings.

Model We use a reduced ResNet18, similar to [20, 103], as the base model for all datasets, and the

network is trained via cross-entropy loss with SGD optimizer and mini-batch size of 10. The size of the

mini-batch retrieved from memory is also set to 10 irrespective of the size of the memory. More details

of the experiment can be found in Appendix1E of [105].

4.5.2 Comparative Performance Evaluation

Method M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

iid online 14.7± 0.6 14.7± 0.6 14.7± 0.6 20.5± 0.4 20.5± 0.4 20.5± 0.4 62.9± 1.5 62.9± 1.5 62.9± 1.5
iid offline 42.4± 0.4 42.4± 0.4 42.4± 0.4 47.4± 0.3 47.4± 0.3 47.4± 0.3 79.7± 0.4 79.7± 0.4 79.7± 0.4

AGEM 7.0± 0.4 7.1± 0.5 6.9± 0.7 9.5± 0.4 9.3± 0.4 9.7± 0.3 22.7± 1.8 22.7± 1.9 22.6± 0.7
ER 8.7± 0.4 11.8± 0.9 16.5± 0.9 11.2± 0.4 14.6± 0.4 20.1± 0.8 26.4± 1.0 32.2± 1.4 38.4± 1.7

EWC 3.1± 0.3 3.1± 0.3 3.1± 0.3 4.8± 0.2 4.8± 0.2 4.8± 0.2 17.9± 0.3 17.9± 0.3 17.9± 0.3
fine-tune 4.3± 0.2 4.3± 0.2 4.3± 0.2 5.9± 0.2 5.9± 0.2 5.9± 0.2 17.9± 0.4 17.9± 0.4 17.9± 0.4

GSS 7.5± 0.5 10.7± 0.8 12.5± 0.4 9.3± 0.2 10.9± 0.3 15.9± 0.4 26.9± 1.2 30.7± 1.2 40.1± 1.4
MIR 8.1± 0.3 11.2± 0.7 15.9± 1.6 11.2± 0.3 14.1± 0.2 21.2± 0.6 28.3± 1.6 35.6± 1.2 42.4± 1.5

ASER 11.7± 0.7 14.4± 0.4 18.2± 0.7 12.3± 0.4 14.7± 0.7 20.0± 0.6 27.8± 1.0 36.2± 1.1 43.1± 1.2
ASERµ 12.2± 0.8 14.8± 1.1 18.2± 1.1 14.0± 0.4 17.2± 0.5 21.7± 0.5 26.4± 1.5 36.3± 1.2 43.5± 1.4

(a) Mini-ImageNet (b) CIFAR-100 (c) CIFAR-10

Table 4.1: Average Accuracy (higher is better), M is the memory buffer size. All numbers are the average
of 15 runs. ASERµ has better performance when M is small and dataset is more complex.2

Method M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

AGEM 29.3± 0.9 30.0± 0.9 29.9± 0.8 40.4± 0.7 39.7± 0.8 39.8± 1.0 36.1± 3.8 43.2± 4.2 48.1± 3.0
ER 29.7± 1.3 29.2± 0.9 26.6± 1.1 45.0± 0.5 40.5± 0.8 34.5± 0.8 72.8± 1.7 63.1± 2.4 55.8± 2.6

EWC 28.1± 0.8 28.1± 0.8 28.1± 0.8 39.1± 1.2 39.1± 1.2 39.1± 1.2 81.5± 1.4 81.5± 1.4 81.5± 1.4
fine-tune 35.6± 0.9 35.6± 0.9 35.6± 0.9 50.4± 1.0 50.4± 1.0 50.4± 1.0 81.7± 0.7 81.7± 0.7 81.7± 0.7

GSS 29.6± 1.2 27.4± 1.1 29.9± 1.2 46.9± 0.7 42.3± 0.8 39.2± 0.9 75.5± 1.5 65.9± 1.6 54.9± 2.0
MIR 29.7± 1.0 27.2± 1.1 26.2± 1.4 45.5± 0.8 40.4± 0.6 31.4± 0.6 67.0± 2.6 68.9± 1.7 47.7± 2.9

ASER 30.1± 1.3 24.7± 1.0 20.9± 1.2 50.1± 0.6 45.9± 0.9 36.7± 0.8 71.1± 1.8 59.1± 1.5 50.4± 1.5
ASERµ 28.0± 1.3 22.2± 1.6 17.2± 1.4 45.0± 0.7 38.6± 0.6 30.3± 0.5 72.4± 1.9 58.8± 1.4 47.9± 1.6

(a) Mini-ImageNet (b) CIFAR-100 (c) CIFAR-10

Table 4.2: Average Forgetting (lower is better). Memory buffer size is M. All numbers are the average
of 15 runs.

Table 4.1 and Table 4.2 show the average accuracy and average forgetting by the end of the data

stream for Mini-ImageNet, CIFAR-100 and CIFAR-10. Based on the performance of iid-online and iid-

offline, we verify that Mini-ImageNet and CIFAR-100 are more complex than CIFAR-10, even though

three datasets have the same number of samples. Overall, ASER and ASERµ show competitive or

2The discrepancy of CIFAR-10 result for MIR between the original paper and this work is discussed in Appendix1 F of
[105]
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Figure 4.2: Average accuracy on observed tasks when M=1k. The shaded region represents the 95%
confidence interval. ASERµ outperforms other baselines especially when the model sees more classes
(each task contains new classes).

improved performance in three standard CL datasets. Especially, we observe that ASERµ outperforms

all the state-of-the-art baselines by significant margins in a more difficult setting where memory size is

small and dataset is complex. Since the difficulty of the three datasets is different, comparing the absolute

accuracy improvement may not be fair. Therefore, percentage improvement3 is more appropriate here.

Taking Mini-ImageNet as an example, ASERµ improves the strongest baseline by 40.2% (M=1k), 25.4%

(M=2k) and 10.3% (M=5k) in terms of percentage improvement. Moreover, as we can see in Fig. 4.2,

ASERµ is consistently better than other baselines in both datasets. We also note that ASERµ generally

performs better than ASER. This is because if we use the ASV criterion as in (4.5), it has a higher

chance that the value is affected by an outlier point in the evaluation set. So the ASVµ in (4.6) gives

a more stable and accurate value in complicated datasets.

Another interesting observation is that ER has very competitive performances. Especially in more

complex datasets, it surpasses GSS and performs similarly as MIR, which proves it to be a simple but

powerful CL baseline. In addition, we find that for complex datasets, when memory size is larger than

5000 (10% of the training data), most of the replay-based methods (except for GSS) outperform the

iid-online, a baseline that trains the model with a one-pass through the data but with iid-sampled mini-

batch from the whole dataset. This means that storing a small number of training samples is crucial for

combating forgetting as well as the learning of the current task in the OCI setting.

We also verify claims from previous work [88, 37, 6]. EWC, a regularization-based method, not only is

surpassed by all memory-based methods but also underperforms the fine-tuning baseline. Additionally,

AGEM, a method that uses memory samples to constrain parameter updates, delivers worse performance

compared with reply-based methods (ER, MIR, and GSS), especially when memory size increases.

Overall, by evaluating on three standard CL datasets and comparing to the state-of-the-art CL

methods, we have shown the effectiveness of ASER and its variant ASERµ in overcoming catastrophic

forgetting, especially in more complex datasets and memory size is relatively small.

3Percentage improvement is the ratio between absolute improvement and baseline performance. For example, in Mini-
ImageNet(M=1k), ASERµ improves MIR by 12.2−8.7

8.7
= 40.2%
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4.6 Conclusion

In this chapter, we proposed a novel ASER method that scores memory data samples according to their

ability to preserve latent decision boundaries for previously observed classes while interfering with latent

decision boundaries of current classes being learned. Overall, in the OCI setting, we observed that ASER

and its ASERµ variant provide competitive or improved performance on a variety of datasets compared

to state-of-the-art ER-based continual learning methods. We also remark that this work paves the way

for a number of interesting research directions building on this work.

Although our SV-based method has greatly improved the memory retrieval and update strategies, we

may be able to do better than simply concatenating retrieved samples with the incoming batch. Hence,

future work could focus on more sophisticated methods to utilize the retrieved samples. It would also

be interesting to investigate alternate CL-specific utility function variations for SV.



Chapter 5

Conclusion

In this thesis, we investigated three important questions in online CL:

• Over the past few years, a large range of methods and tricks have been introduced to address the

online CL problem, but there is limited consensus in the literature on experimental setups and

datasets. Although most papers show that their methods surpass others in one specific setting,

the open question is: what are the relative advantages of these approaches and the settings where

they work best?

• The primary evaluation of CL in the last few years has been centred around accuracy-related

metrics. However, this may lead to a biased conclusion without accounting for the scalability

of these techniques over an increasing number of tasks and more complex settings [30]. When

considering more metrics, including accuracy, total run time, RAM usage, and more realistic CL

datasets and settings, which method works the best?

• Methods with a memory buffer have shown to be successful and efficient for the online class

incremental setting [8, 6]. Since the memory buffer is the only place to store data from previous

tasks, a vital but open question for these methods is how to retrieve memory samples and update

the memory buffer when new data arrives?

In the next sections, we summarize the main contributions of this thesis and discuss a few possible

future research directions.

5.1 Summary of Contributions

This thesis aims to study the online CL in image classification that requires a neural network to learn

continually from an online stream of non-i.i.d data and accumulate the acquired knowledge without

forgetting. Specifically, we try to address the three crucial problems we mentioned in the previous

section, and the contributions of this thesis can be summarized as follows:

(1) In Chapter 2, we provided a practical comparative survey of the state-of-the-art methods and

recently proposed tricks. In summary, we concluded that for the OCI setting, iCaRL, which

combines replay, knowledge distillation and nearest class mean classifier, should be used when the

53



Chapter 5. Conclusion 54

memory buffer is very small. When a larger memory buffer is available, MIR with the review trick

or the nearest class mean classifier is the best option. In terms of the ODI setting, MIR is the

strong and versatile method across different datasets and buffer sizes. With best methods and

latest tricks, online CL (with a very small mini-batch) is now approaching the performance levels

that are much closer to its ultimate goal of matching offline training.

(2) To better prepare the CL methods for real-world applications in image classification, in Chapter 3,

we introduce a simple but effective approach that combines memory replay and commonly used

techniques in image classification including, transfer learning, data augmentation and deeper net-

work architectures. The proposed method shows remarkable performance in different metrics,

including accuracy, RAM usage and run time, etc., in various realistic settings and demonstrates

the practicality of CL algorithms. Our solution based on this method won the CLVISION Continual

Learning challenge at Computer Vision and Pattern Recognition conference, CVPR 2020.

(3) In Chapter 4, we propose a novel memory-based method called Adversarial Shapley value Experi-

ence Replay (ASER) that leverages Shapley value (SV) to determine the contribution of memory

samples to learning performance. We introduce an adversarial perspective of SV for CL memory

retrieval that scores memory data samples according to their ability to preserve latent decision

boundaries for previously observed classes (to maintain learning stability and avoid forgetting)

while interfering with latent decision boundaries of current classes being learned (to encourage

plasticity and optimal learning of new class boundaries). Through extensive experiments on three

commonly used benchmarks in the CL literature, we demonstrate that ASER provides competitive

or improved performance compared to state-of-the-art memory-based methods in the OCI setting,

especially when the memory buffer size is small.

5.2 Future Directions

In this section, we highlight some of the relevant directions for future research.

• More effective way to utilize retrieved samples: In Chapter 4, although our proposed ASER

has greatly improved the memory retrieval and update strategies, we may be able to do better

than simply concatenating retrieved samples with the incoming batch and perform SGD update.

Hence, future work could focus on more sophisticated methods to utilize the retrieved samples. A

possible direction is to leverage meta-learning techniques, such as Reptile [118], but meta-learning

techniques often have a longer running time than the simple reply.

• Alternate CL-specific utility function variations for SV: In ASER, the utility function is

set as the test accuracy, and the SV can measure how much of the test accuracy is attributed to a

training instance. It would also be interesting to investigate alternate CL-specific utility function

variations for SV. Moreover, in the context of regression tasks, accuracy is not a good utility

anymore. How to choose the utility function for regression tasks and if ASER can generalize to

regression tasks are open questions for future work.

• More efficient memory storage: Most memory-based methods, including ASER, store the raw

images in the memory buffer. By storing more compact representations of images [123], a fixed-size

memory buffer can save more information. It would be interesting to investigate if ASER can work
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well with the recently proposed online continual compression technique [14, 48] and boost the CL

performance by storing more information in the memory buffer.

• Leverage data imbalance techniques: As shown in Section 2.7.2, given the limited size of the

memory buffer, the imbalance between previous and new data is a crucial cause of catastrophic

forgetting. Since data imbalance has been widely studied in the computer vision area, future work

can consider leveraging techniques [33, 70, 59] for data imbalance to combat forgetting.

• Supervised contrastive continual learning: As shown in Section 2.8.3, Nearest Class Mean

(NCM) classifier is a very competitive substitute for the Softmax classifier. However, the NCM

classifier requires well-separated class embeddings, namely embeddings from the same class should

be closer than embeddings from different classes. The prevalent cross-entropy loss may not be

effective for obtaining the well-separated class embeddings. At the same time, the recently proposed

supervised contrastive loss (SupCon) [74] is designed precisely for the purpose mentioned above.

A promising direction is to train the representation using the SubCon loss and classify with the

NCM classifier.

In conclusion, this thesis has made three meaningful contributions for online CL in image classifica-

tion, including comprehensively reviewing and evaluating recent approaches, addressing the challenges

for bringing online CL into more realistic applications, and proposing a novel memory buffer manage-

ment method that shows the state-of-the-art performance when memory buffer size is small. We hope

that the presented work encourages further investigation of online CL and further moves this emerging

field along the path of practical impact.
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Dataset #Task #Train/task #Test/task #Class Image Size Setting

Split MiniImageNet 20 2500 500 100 3x84x84 OCI
Split CIFAR-100 20 2500 500 100 3x32x32 OCI
CORe50-NC 9 12000∼24000 4500∼9000 50 3x128x128 OCI
NS-MiniImageNet 10 5000 1000 100 3x84x84 ODI
CORe50-NI 8 15000 44972 50 3x128x128 ODI

Table A.1: Summary of dataset statistics

Appendix A Survey Experiment Details

Appendix A.1 Dataset Detail

The summary of dataset statistics is provided in Table A.1.

The strength of each nonstationary type used in the experiments are summarized below.

• Noise: [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6]

• Occlusion: [0.0, 0.07, 0.13, 0.2, 0.27, 0.33, 0.4, 0.47, 0.53, 0.6]

• Blur: [0.0, 0.28, 0.56, 0.83, 1.11, 1.39, 1.67, 1.94, 2.22, 2.5]

Appendix A.2 Implementation Details

This section describes the implementation details of each method, including the hyperparameter grid

considered for each dataset (see Table A.2). As we described in Section 2.4 of the main paper, the first

DCV tasks are used for hyperparameter tuning to satisfy the requirement that the model does not see

the data of a task more than once, and DCV is set to 2 in this work.

• EWC++: We set the α in Eq. (2.8) to 0.9 as suggested in the original paper. We tune three

hyperparameters in EWC++, learning rate (LR), weight decay(WD) and λ in Eq. (2.7).

• LwF: We set the temperature factor T = 2 as the original paper and other CL papers. The

coefficient λ for LKD is set to |Cnew|
|Cold|+|Cnew| following the idea from [157] and the coefficient for LCE

is set to 1− λ.

• ER: The reservoir sampling used in MemoryUpdate follows Algorithm 3. For MemoryRetrieval , we

randomly select samples with mini-batch size of 10 irrespective of the size of the memory buffer.

• MIR: To reduce the computational cost, MIR selects C random samples from the memory buffer

as the candidate set to perform the criterion search. We tune LR, WD as well as C.

• GSS: For every incoming sample, GSS computes the cosine similarity of the new sample gradient

to n gradient vectors of samples randomly drawn from the memory buffer (see Algorithm 4). Other

than LR and WD, we also tune n.

• iCaRL: We replace the herding-based [155] memory update method with reservoir sampling to

accommodate the online setting. We use random sampling for MemoryRetrieval and tune LR and

WD.

• A-GEM: We use reservoir sampling for MemoryUpdate and random sampling for MemoryRetrieval

and tune LR and WD.
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Method CIFAR-100 Mini-ImageNet CORe50-NC NS-MiniImageNet CORe50-NI

EWC++
LR: [0.0001, 0.001, 0.01, 0.1]

WD: [0.0001, 0.001], λ: [0, 100, 1000]

LwF
LR: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]

WD: [0.0001, 0.001, 0.01, 0.1]

ER
LR: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]

WD: [0.0001, 0.001, 0.01, 0.1]

MIR
LR:[0.0001, 0.001, 0.01, 0.1]

WD: [0.0001, 0.001], C: [25, 50, 100]

GSS
LR:[0.0001, 0.001, 0.01, 0.1]

WD: [0.0001, 0.001], n: [10, 20, 50]

iCaRL
LR: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]

WD: [0.0001, 0.001, 0.01, 0.1]

A-GEM
LR: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]

WD: [0.0001, 0.001, 0.01, 0.1]

CN-DPM
LR: [0.0001, 0.001, 0.01, 0.1] [0.001, 0.005, 0.01] [0.001, 0.01] [0.001, 0.005, 0.01] [0.001, 0.01]
cc: [0.001, 0.01, 0.1] [0.001, 0.0015, 0.002] [0.0005, 0.001, 0.002] [0.0005, 0.001, 0.002] [0.0005, 0.001, 0.002]
α: [-100, -300, -500] [-1200, -1000, -800] [-1200, -1000, -800, -300] [-15000, -5000, -500] [-1200, -1000, -800, -300]

GDumb LR: .001, 0.01, 0.1], WD:[0.0001, 0.000001]

Table A.2: Hyperparameter grid for the compared methods.

• CN-DPM: CN-DPM is much more sensitive to hyperparameters than others. We need to use

different hyperparameter grids for different scenarios and datasets. Other than LR, we tune α, the

concentration parameter controlling how sensitive the model is to new data and classifier chill cc,

the parameter used to adjust the VAE loss to have a similar scale as the classifier loss.

• GDumb: We use batch size of 16 and 30 epochs for all memory sizes. We clip gradient norm with

max norm 10.0 and tune LR and WD.

Appendix B Additional Experiments and Results

Appendix B.1 More Results for OCI Setting

Fig B.1, B.2 and B.3 show the average accuracy measured by the end of each task on Split CIFAR-100,

Mini-ImageNet and CORe50-NC with three different memory buffer sizes (1k, 5k, 10k).
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Figure B.1: The average accuracy measured by the end of each task for the OCI setting on Split CIFAR-
100 with three memory sizes.

Appendix B.2 OCI Tricks on Split Mini-ImageNet

We evaluate the tricks described in Section 2.7.3 on Split Mini-ImageNet. As shown in Table B.1 and

Fig. B.4, we find similar results as in Split CIFAR-100 that all tricks are beneficial. LB and KDC* are
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Figure B.2: The average accuracy measured by the end of each task for the OCI setting on Split Mini-
ImageNet with three memory sizes.

1 2 3 4 5 6 7 8 9
Task

10

20

30

40

50

60

Ac
cu

ra
cy

(%
)

Memory Size = 1k

1 2 3 4 5 6 7 8 9
Task

Memory Size = 5k

1 2 3 4 5 6 7 8 9
Task

Memory Size = 10k

A-GEM CN-DPM EWC++ Finetune GDumb GSS MIR iCaRL LwF ER

Figure B.3: The average accuracy measured by the end of each task for the OCI setting on CORe50-NC
with three memory sizes.

Finetune 3.4± 0.2
Offline 51.9± 0.5

Method A-GEM ER MIR

Buffer Size M=1k M=5k M=10k M=1k M=5k M=10k M=1k M=5k M=10k

NA 3.4± 0.2 3.7± 0.3 3.3± 0.3 6.4± 0.9 14.5± 2.1 15.9± 2.0 6.4± 0.9 16.5± 2.1 21.0± 1.1
LB 5.8± 0.8 5.8± 0.5 5.4± 0.9 14.4± 2.1 19.3± 2.3 22.1± 1.1 17.1± 0.9 21.7± 0.7 23.0± 0.8
KDC 8.0± 1.1 7.5± 1.5 8.2± 1.7 12.3± 2.5 15.4± 0.4 14.6± 2.1 14.3± 0.5 15.8± 0.4 15.5± 0.5
KDC* 5.6± 0.4 5.5± 0.5 5.4± 0.4 16.4± 0.8 20.3± 2.5 23.0± 3.1 16.4± 0.6 25.1± 0.8 26.1± 0.9
MI 3.5± 0.2 3.7± 0.2 3.6± 0.3 6.4± 0.6 16.3± 1.3 24.1± 1.3 6.6± 0.6 15.2± 1.1 22.0± 1.9
SS 5.7± 0.9 6.2± 0.8 5.7± 0.8 12.5± 1.9 20.5± 2.1 24.1± 1.1 14.2± 1.0 21.9± 0.8 24.7± 0.9
RV 4.1± 0.2 19.9± 3.7 25.5± 4.7 11.4± 0.6 32.1± 0.8 36.3± 1.5 9.1± 0.5 29.9± 0.7 37.3± 0.5
NCM 10.2± 0.4 11.7± 1.5 13.0± 0.5 14.2± 0.7 26.7± 0.7 28.2± 0.6 13.6± 0.6 26.4± 0.7 28.6± 0.4

Best OCI 14.7± 0.4 21.1± 1.7 31.0± 1.4 14.7± 0.4 21.1± 1.7 31.0± 1.4 14.7± 0.4 21.1± 1.7 31.0± 1.4

Table B.1: Performance of compared tricks for the OCI setting on Split Mini-ImageNet. We report
average accuracy (end of training) for memory buffer with size 1k, 5k and 10k. Best OCI refers to the
best performance from the compared methods in Table 2.8.

most useful when the memory buffer is small, and NCM and RV are more effective when the memory

buffer is large. One main difference is that NCM is not as effective as in CIFAR-100 with a 10k memory

buffer as base methods with NCM cannot outperform the best OCI performance.

Appendix B.3 More Results for ODI Setting

Fig. B.5, B.6 and B.7 show the average accuracy measured by the end of each task on Mini-ImageNet-

Noise, Mini-ImageNet-Occlusion and CORe50-NI with three different memory buffer sizes (1k, 5k, 10k).
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Figure B.4: Comparison of various tricks for the OCI setting on Split Mini-ImageNet. We report average
accuracy (end of training) for memory buffer with size 1k, 5k and 10k.
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Figure B.5: The average accuracy measured by the end of each task for the ODI setting on Mini-
ImageNet-Noise with three memory sizes.
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Figure B.6: The average accuracy measured by the end of each task for the ODI setting on Mini-
ImageNet-Occlusion with three memory sizes.
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Figure B.7: The average accuracy measured by the end of each task for the ODI setting on CORe50-NI
with three memory sizes.


