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1. Why do we need Continual Learning?
2. What’s Continual Learning and what’s the main challenge?
3. What are popular approaches in this area?
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Why do we need Continual Learning

• Numerous data are generated daily on edge devices
• Model performance could be greatly improved by integrating these data
• User data can’t always be uploaded to servers for training due to privacy
concerns

This necessitates methods that can
continually learn from streaming
data while minimizingmemory
storage and computation footprint.

…
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What’s Continual Learning

• Continual Learning (CL) studies the problem of learning from a
non-i.i.d stream of data, with the goal of preserving and extending
the acquired knowledge over time

• The main challenge of CL is catastrophic forgetting, the inability of
a network to perform well on previously seen data after updating
with recent data
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Continual Learning Approaches

New data Old data

Memory buffer

Regularization Parameter Isolation Replay

• Constrain the update of key
network parameters

• Knowledge Distillation to constrain
the output of the network

• Assign per-task parameters

• Often require task-ID

• Memory buffer stores a subset of previous
data for replay
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Which method works the best?
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Which method works the best?

CVPR20 Continual Learning Competition

Competition
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Three challenge tracks

• New instances(NI)

• Multi-Task New classes(NC)

• New instances & classes (NIC)
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Three challenge tracks
• New instances(NI)
• Multi-Task New classes(NC)
• New instances & classes (NIC)
• 391 tasks, each one has 300 images of the same class
• The class can be seen or completely new
• The model processes tasks sequentially

Task-1 Task-10

…

Task-100

…
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Batch-level Experience Replay with Review

…

Memory Buffer

Task-0Pre-trained model

Training

Model buffer

CNNCNN

CNN
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Batch-level Experience Replay with Review

…

Memory Buffer

Task_1Pre-trained model

Training

Model buffer

CNN

CNN
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Batch-level Experience Replay with Review

New data + Old data

Old data

CNN

Current model

CNN

cross-entropy loss for new data and old data

knowledge distillation loss for old data

Total Loss

CNN

Current & old models
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Batch-level Experience Replay with Review

…

Memory Buffer

By the end of training all tasksPre-trained model

Training

Smaller learning rate for review

Model buffer

CNN

CNN
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Final Ranking
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Discussion

When I tried to find a method that works well in the competition, it took me a
long time !

Most papers show that their methods surpass others in one specific setting

• What is the setting where each method works the best?
• What are the relative advantages of different tricks?
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• What is the setting where each method works the best?
• What are the relative advantages of these tricks?
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An Empirical Survey

• Summarized 40 recently proposed approaches

• Empirically scrutinized

• 9 SOTA methods + 2 baselines

• 7 simple but effective tricks
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Experiment Setup

Datasets Task # # of classes/task # of images/class Image Size
Split CIFAR-100 20 5 500 32x32x3
Split MiniImageNet 20 5 500 84x84x3
CORe50-NC 9 10 2398 128x128x3

Metrics: (1) Average Accuracy, (2) Forgetting, (3)Run time (4) Forward Transfer (5) Backward TransferMetrics: (1) Average Accuracy, (2) Forgetting, (3)Run time (4) Forward Transfer (5) Backward Transfer

Small scaled, artificially created

Large scaled, designed for CL
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Key Insight 1 –Which one works the best?

In CIFAR-100 & Mini-ImageNet
• iCaRL shows strong performance when M is small

• GDumb dominates when M becomes larger

• iCaRL: Knowledge Distillation + Replay + Nearest Mean Classifier
• Gdumb: trains a classifier from scratch with the memory data only

Memory Buffer

19



Key Insight 2 – Larger and CL-specific dataset

For larger and CL-specific dataset, CORe50-NC
• MIR is the strongest across different M sizes
• MIR: replay based method that carefully selects which samples to replay with the new data
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• All the tricks improve the base methods
• Two tricks are most effective (1)Nearest Mean Classifier and (2) Review

Key Insight 3 - Tricks

No
trick
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• All the tricks improve the base methods
• Two tricks are most effective (1)Nearest Mean Classifier and (2) Review
• Base methods with tricks outperform SOTA when M is large

Key Insight 3 - Tricks

SOTA
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Discussion

Replay based methods with memory buffers have show exceptional
promise in the competition and the survey

Open question:
Which buffered images to replay, especially when the buffer is small ?
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Which buffered images to replay, especially when the buffer is small ?

New Idea
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ASER:
Adversarial Shapley Value Experience Replay
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How do existing methods select replay samples (t-SNE)

: New task samples
: Buffered samples

: retrieved buffered samples for replay
Color : represents a class

• Random Replay: randomly retrieves samples for replay • MIR[2] selects samples whose loss most increases after a
update with new data
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How do existing methods select replay samples (t-SNE)

: New task samples
: Buffered samples

: retrieved buffered samples for replay
Color : represents a class

ASER strategically retrieves buffered samples that are representative of different classes but also
adversarially located near class boundaries and current task samples

• Random Replay: randomly retrieves samples for replay • MIR[2] selects samples whose loss most increases after a
update with new data
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Shapley Value

• Shapley value (SV)

• SV for data valuation
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Shapley Value

• Shapley Value (SV)
• Proposed originally in cooperative game theory to fairly distribute total
gains to each player

• SV for data valuation
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Shapley Value

• Shapley Value(SV)
• Originally proposed in cooperative game theory to fairly distribute total gains
to each player

• SV for data valuation
• Measure how much of the test accuracy is attributed to a training sample

• St(i) is high -> training sample i is useful for the test accuracy of test set t
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ASER: Adversarial Shapley Value Experience Replay

Adversarial Shapley value (ASV) for CL memory retrieval to score
buffered samples according to their abilities to:

• preserve latent decision boundaries for old classes (to avoid forgetting)

• interfere with latent decision boundaries for new classes (to encourage
learning of new class boundaries)

How to quantify these abilities?
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ASER: Adversarial Shapley Value Experience Replay

gives the buffered sample 𝑖 a score. We replay buffered samples with high scores.

Sample j is another buffered sample

To have high ASV

• Average of 𝑠j(𝑖) should be high

• Buffered sample 𝑖 is useful for classification of samples in the memory buffer

• Should be replayed to preserve the old knowledge

preservation
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ASER: Adversarial Shapley Value Experience Replay

gives the buffered sample 𝑖 a score. We replay buffered samples with high scores.

Sample k is a new task sample

To have high ASV

• Average of 𝑠k(𝑖) should be negative with large magnitude

• Buffered sample 𝑖 interferes with new task samples (the model has hard time classifying them)

• Should be replayed to assist the learning of new knowledge

interference
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Experiment: results
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Mini-ImageNet CIFAR-100

• Average accuracy on observed tasks with buffer size 1k.
• ASER outperforms other methods when the model sees more tasks

8.7%->12.2% 11.2%->14.1%
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Contributions

• A simple and efficient continual learning approach and won the
competition at CVPR2020

• A comprehensive empirical survey for online continual learning

• A novel and effective way to use Shapaey value adversarially in
continual learning to choose replay samples from the memory buffer
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What’s the next step?

New Idea Future Work
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Future Work

• More effective way to utilize retrieved samples
• More sophisticated methods to utilize the retrieved samples
• Meta-learning is a potential direction

• Supervised contrastive continual learning
• Nearest Class Mean (NCM) classifier is a competitive substitute for
Softmax classifier
• NCM classifier requires well-separated class embeddings
• Supervised contrastive loss [8] is a promising direction
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